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ABSTRACT
Mobile electrocardiogram (ECG) streaming in body area
networks (BANs) is challenging owing to an inherently in-
consistent wireless channel, which generally cannot be as-
sumed wide-sense-stationary. Common conventional ECG
compression is entropy-based and thus is fundamentally at
odds with a BAN channel plagued with variabilities. That
is, if the wireless signal experiences a deep fade regime, ex-
cessive errors, user contention, and RF interference could all
combine so as to result in an interruption in ECG streaming
until channel quality recovers. To mitigate against this hard
limit on channel quality (i.e. the cliff effect), this paper pro-
poses a linear ECG coding method whereby proneness to
mis-reception due to channel errors, contention, and/or in-
terference is traded for a soft, proportional degradation in
signal definition. As such, the likelihood of ECG streaming
interruption in BANs is vastly lessened while also enhancing
capacity and relieving wireless medium contention. This im-
proved robustness and scalability in the wireless network is
particularly sought after in mission-critical healthcare appli-
cations with stringent QoS demands.

CCS Concepts
•Networks→Network design principles; Cross-layer
protocols;
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1. INTRODUCTION
Digital healthcare technologies are at the forefront of the

first wave of internet of things (IoT) devices. The healt-
hcare demand posed by ageing populations has spurred the
development of body-worn“patches”that monitor vital signs
and relay them wirelessly for subsequent analysis by medical
staff. The overarching aim is to supply healthcare services
at a scale not currently attainable under traditional medical
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practice workflows. Such healthcare “automation”—both in
hospitals or at home—will allow for significantly more effi-
cient workflows, whose beneficiary is the society at large e.g.
cost reduction, resource optimization, sustainable health sy-
stem, etc.

A typical wireless patient monitoring system consists of
ultra low-power, body-worn patches that collect vital sign
measurements (e.g. heart rate, respiration rate, tempera-
ture, etc.) and a so-called off-body [15] basestation (CM4
in [27]) configured in a star topology [26]. The basestation
forwards these measurements to a server unit which in turn
collates medical records and generates alerts for the atten-
tion of nurses in a hospital.

An emerging body of evidence documents the clinical and
economical benefits of such wireless patient monitoring [8].
However, the slow uptake of this technology in medical arenas—
which are conservative and resistive to change by their very
nature—has not fostered further research to revisit the sy-
stem architecture and investigate avenues of potential en-
hancements. Specifically, medical practice is heavily regu-
lated and standarized, which calls for reliable wireless pa-
tient monitoring wherein the scalability and robustness of
diagnostic bio-waveform delivery is paramount. This strin-
gent level of reliability is meant to reflect an overall system
quality of service (QoS) which we define as: the probabi-
lity that an individual measurement data packet will be cor-
rectly transferred from patch to basestation with applicable
maximum latency [22, p. 61]. This QoS is also of utmost
importance in the short-term if wireless patient monitoring
were to overcome the barriers to technology adoption and
penetration in medical domains.

In light of the motivation to support stringent, medical-
grade QoS, a fundamental question arises: what are the is-
sues encountered in BAN wireless patient monitoring de-
ployments?

Robustness. BAN channels are characterized by large-
scale statistics that vary not only over coarse-grained distan-
ces but also with changes in body posture, the way devices
are mounted/worn, and angular antenna relative orienta-
tion [15], violating the wide-sense-stationarity assumption in
on-body channel variants [20]. Together, large- and small-
scale statistics in BANs give rise to more variable path loss
profiles when compared to more traditional urban cellular
channels for instance [21, 6]. These channel variations are
abrupt and nondeterministic (e.g. a patient turning in bed)
and could prove challenging (or impossible) for a system em-
ploying a low-power protocol and low-power, low-cost pat-
ches which attempt to adapt through transmitter-receiver



feedback. Moreover, RF interference in industrial, scientific,
and medical (ISM) bands worldwide is ever present and is
continually morphing with standardization activities, which
poses extra difficulties for compliance, design, and reliability.

Scalability. In a surgical ward use case, a number of
patches may simultaneously stream multi-lead ECG mea-
surements to one tethered basestation acting as an uplink.
The high sampling rate of raw ECG signals as mandated
by diagnostic-grade medical standards (cf. [4]) quickly sa-
turates the link budget of co-located patches in low-power,
low-throughput protocols such as IEEE 802.15.6 [1]. This is
because in mission-critical medical applications, it is neces-
sary and customary in practice to introduce a retransmission
link margin over and above the nominal budget in order to
guarantee a near 100% QoS (i.e. quasi error-free reception)
should a worst case operating condition occur (say as a result
of mobility). Such retransmission margin is typically allo-
cated in the link budget permanently, which compromises
the scalability of network to accommodate more participa-
ting users. This mostly idle contingency link margin can be
somewhat relaxed using compression techniques, commonly
entropy-based [12], which remove redundancy from the raw
ECG signal. A byproduct of entropy-based redundancy re-
moval is to fragilize the transmission stream further towards
channel errors. That is, a mere unlucky flip of a channel bit
at the decoder could totally destroy a portion of the trans-
mitted ECG signal.

Recent advances in mobile video communications have
shown that considerable improvements in scalability and ro-
bustness can be attained by taking a cross-layer view of the
wireless design problem at hand. Specifically, it is demon-
strated that a joint approach whereby source compression
and channel error protection are combined results in the
ability to realize graceful signal degradation that is linearly
proportional to a given instantaneous channel quality [11, 3].
As such, the network operation is rendered self-regulating in
that channel errors are tolerated at the expense of reduced
video quality. This approach is in line with information-
theoretic findings stating that the separation of source and
channel coding is inefficient when the statistics of the chan-
nel, such as that of BAN, cannot be predicted [11, 24].

In this paper, we revisit the source-channel separation
conventional wisdom in ECG streaming applications. We
propose a linear transformation with excellent energy com-
paction properties at least of comparable performance to
state-of-the-art entropy-based ECG compression techniques.
This proposition is largely motivated by the desire to also
enhance the reliability of ECG streaming in BANs by boos-
ting the network’s robustness and scalability. This is to
be achieved capitalizing on the linearity of the proposed
operator, as opposed to the nonlinearity of entropy-based
compression techniques (for example) wherein there exists a
hard limit on the wireless channel quality below which signal
reconstruction is not possible (i.e. a cliff effect). The pro-
posed cross-layer coding draws no distinction between the
source ECG signal and the wireless channel. It is posited
that such coding will pave the way for two graceful wireless
ECG streaming variants, to be adapted from mobile video
literature [11] & [3] (analogue and digital, respectively):
(a) Analogue-style: Transmitters may place unequal emp-
hasis on groups of dominant, transform-domain coefficients
in terms of transmission power part of a global optimiza-
tion objective. Such optimization will allow the network to

tolerate bit errors and packet loss at the receiver without
incurring a catastrophic effect on the service; rather, the
final QoS would degrade linearly commensurate with the
bit errors and packet loss experienced. Clearly, this analo-
gue, power-allocation-based scheme is linear and enhances
the network’s capacity (i.e. scalability) and robustness (i.e.
provisions for and recovery from errors).
(b) Digital-style: Transform-domain coefficient bits may
also be grouped according to their impact on the distortion
of signal reconstruction, subject to a criterion e.g. mean
square error (MSE). The resultant distortion groups (of bits)
are then encoded using rateless codes depending on their
relative importance so as to produce parity bits to be ap-
pended to the original bits, resulting in added channel pro-
tection. Such a digital scheme—similar to the above analogue-
style scheme—is also linear (i.e. as opposed to entropy co-
ding), enabling gracefully degradable medical signal delivery
as a function of a given node’s channel quality. Thus, this
digital coding scheme also enhances the overall network sca-
lability and robustness. When contrasted with the previous
analogue scheme, such digital approach simplifies the RF re-
sources of low-power, low-cost patches required for finer po-
wer control in favour of more tractable digital coding. The
extra decode overhead, however, is shifted to the basesta-
tion side (or server side) which, by virtue of being tethered,
enjoys less restrictive resource constraints within the overall
network architecture design.

We evaluate the performance of the proposed linear trans-
formation using two standard metrics commonly referred to
in ECG literature: compression rate (CR) and percentage
root mean square1 difference (PRD) [14, 12]. A represen-
tative set of extensive signal morphologies including normal
sinus rhythms and arrhythmias is used to characterize the
proposed ECG coding performance. The following results
are summarized:

• For the normal sinus rhythm dataset, the CR and PDR
averaged around 11x and 3.6%, respectively. CR was
well above 11x across just under half of the whole da-
taset. Similarly, PDR was better than its 3.6% average
across half of the dataset.

• For the arrhythmia dataset, the CR and PDR averaged
around 7x and 8.5%, respectively. CR fared better
than its 7x average across one-third of the dataset.
PDR was still better than its 8.5% average across half
of the dataset.

Contribution. This paper proposes a novel cross-layer
coding for ECG streaming targeted at body-worn wireless
vital sign monitoring BAN systems. The cross-layer linear
method is shown to perform competitively when compared
to state-of-the-art ECG compression techniques, while being
a key enabler towards realizing graceful signal delivery in
BANs. Graceful ECG streaming is posited to help overcome
barriers to uptake in medical arenas by virtue of enhanced
network robustness and scalability i.e. QoS.

1aka RMS
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Figure 1: Overall system block diagram: ECG compression
interacts with subblocks from the biomedical signal proces-
sing datapath; namely, heart rate detection and classifier
subsystems.

2. ENCODER
In order to facilitate graceful wireless ECG steaming, the

challenge is to cluster linear dominant coefficients that des-
cribe the ECG medical signal in a transform domain effi-
ciently. Put differently, the key is to localize transform-
domain dominant coefficients such that they can be bit-
mapped in an efficient way, while also providing competi-
tive energy-compaction performance. Mobile video systems
achieve this using a 3-dimensional (3D) discrete cosine trans-
form (DCT) [11, 3]. In 3D DCT, the idea is to exploit the
inherent spatio-temporal correlations in video—in space as a
result of smooth 2D pixel transitions and in time as a result
of smoothly varying sequences of successive frames. Because
of these correlations, 3D DCT tends to produce clustered
dominant coefficients whose locations can be described con-
cisely i.e. using little amount of information. So how can
we accomplish the same transform-domain linear dominant
coefficient clustering in ECG? We turn next to tackle this
central question.

2.1 Diagonalization-based compression
We make a key observation that successive ECG cycles

nominally possess a large degree of self-similarity. That is,
if we take a stream of ECG data and rearrange it into a
matrix whose rows are successive ECG cycles, we will readily
see correlations between these rows.

In a similar vein, the proposed compression relies on cas-
ting a block of ECG data into an approximate circulant ma-
trix. This casting assumes a priori knowledge of the ECG
rate. The a priori knowledge will be supplied by a dedicated
QRS complex2 detection block, part of a separate biome-
dical signal processing pipeline. The approximate circulant
matrix is subsequently diagonalized by means of the Fou-
rier transform [7]. The resultant 2D spectrum characterizes
the approximate circulant matrix’s dispersion i.e. deviation
from an ideal circulant matrix whose eigenvalues coincide
perfectly with the main diagonal. This deviation is manifes-
ted as off-diagonals with their spread being indicative of the
severity of the data block’s time-frequency dispersion (i.e.
relative variability).

A high-level system diagram of compression block and de-
pendencies is shown in figure 1. The heart rate (HR) block
supplies compression with the periodicity of the ECG wa-
veform in samples. When applicable, the optional classifier
block, if present part of the biomedical signal processing pi-

2QRS complex is a technical ECG term, see [17]
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Figure 2: Interleaving original data block into subblocks to
decouple circulant matrix size from ECG cycle length.

peline, may indicate to compression that the incoming signal
belongs to a class of aperiodic ECG waveforms with no fixed
periodicity such that compression can adapt its operation
accordingly.

In order for this formulation to lend itself to the problem
domain of compression, there are two problems that need ad-
dressing: (1) the restructuring of incoming data such that it
can be cast as approximate circulant matrices, and (2) enco-
ding the features of the 2D spectrum in a tractable manner
without incurring too much overhead.

2.1.1 Matrix packing – degrees of freedom
The ECG signal has a wide-ranging rate variability i.e.

typically 30 to 210 beats per minute (bpm) depending on
age and physiological state. Thus depending on the sam-
pling rate of the system, the length N of one cycle of ECG
can be long or short. On the other hand, casting a block
of data into an approximate circulant matrix necessitates
the availability of N2 samples. This would mean that an
approximate circulant matrix will have its size dictated by
the ECG rate! Such hard requirement on the approximate
circulant matrix size would be problematic for two reasons.
Firstly, it couples the latency of compression with ECG cy-
cle length in samples. Secondly, it increases the resources
for FFT computations as a quadratic function of N .

To mitigate against this seeming dependency on ECG
rate, the data can be interleaved. This is best highlighted
pictorially as shown in figure 2, where the ECG period N is
rearranged by means of interleaving into R parallel shorter
periods each of length M .

Specifically, the raw stream of ECG data making up a
block (L × N) is downsampled by some integer factor R.
The process is then repeated with successively increasing
phases ∈ [0, R − 1]. Hence, we have in effect restructured
the original data block (L×N) into subblocks (L×M ×R)
through interleaving without loss of information. There is
no loss of information because we still extract correlations
across the newly restructured subblocks. The nature and
interpretation of this extraction may vary though depending
on how we choose to pack submatrices for diagonalization.
That is, after the optional reduction of the ECG rate by R,
the resultant subblocks may be independently processed or
packed further together.

Using interleaving as an extra degree of freedom, ECG
data can be packed into circulant matrices in a variety of
ways. For instance, figure 3 shows two colour-coded ways
of packing downsampled streams: with high and low la-
tencies. The high-latency option requires that the entire
stream be downsampled first before packing can commence.
While the low-latency option packs a group of downsam-
pled phases together, allowing a submatrix to be formed
much sooner. However, it is informative to emphasize the
following. High-latency packing produces a time-frequency
coupling representation of data that takes place within one
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Figure 3: Illustration of high-latency and low-latency packing through interleaving. Samples from different downsampling
phases within one given ECG cycle are highlighted using distinct colours (called intra-ECG cycle, horizontally in figure on the
left), while samples belonging to different ECG cycles (dubbed inter-ECG cycle, vertically in figure on the left) are denoted
with different shades of the same colour.

downsampling phase. Whereas low-latency packing integra-
tes multiple downsampling phases into one time-frequency
coupling analysis.

Generally, this interleaving-based restructuring can be used
to trade off diagonalization efficacy—which necessarily in-
curs longer FFT sizes3—with compression latency. This is
somewhat analogous to deep interleavers in communications,
which also increase latency. Deep interleavers are at the he-
art of practical codes that approach the Shannon channel
capacity [5].

2.1.2 Thresholding
After diagonalization, the weak coefficients of the 2D spectrum

are truncated (i.e. thresholded out). That is, we discard
their intangible contribution to ECG definition.

The threshold should be chosen according to a desired
balance between the number of retained coefficients in the
thresholded matrix (i.e. compression) and target distortion
in the reconstructed signal. Further, the threshold can be
derived as a function of the power of the original untransfor-
med, time-domain ECG signal, noting the energy conserva-
tion of the linear Fourier operator. This threshold function
can also be made to depend on additional parameters such
as required reconstruction distortion, or extra signal fea-
tures (e.g. standard deviation if the medical signal is not
zero-mean). The model for the derivation of the threshold
can be optionally made arbitrarily complex for dynamic re-
configuration if necessitated by the end medical application
scenario. Data-driven machine learning techniques such as
linear regression can be employed to best fit a multivariate
model to empirical data as to produce an optimal threshold
function that generalizes well.

2.1.3 Bitmap encoding – metadata
The resultant, thresholded sparse matrix will have large

areas of zeros. It would be inefficient to tag each spectral
component we are going to send over the wireless chan-
nel with its 2D coordinates. Instead, run-length encoding
(RLE), is applied in the diagonal dimension to group conse-
cutive sequences of switched-on or switched-off coefficients.
For example, if in a 100×100 matrix we had the main diago-
nal containing 19 zeros in the middle and active coefficients

3Without digressing from main discourse, interested reader
is referred to information-theoretic concepts in [7] on the
asymptotic behaviour of Toeplitz & Circulant matrices in
relation to entropy.

either side, then its RLE description will be 1#41 0#19 1#40.
Here the first binary digit 1 denotes a run of switched-on
coefficients followed by how many after the hash symbol.
The next sequence is inactive as indicated by 0 for 19 conse-
cutive coefficients. The last sequence is active and comprises
a stretch of 40 coefficients.

RLE is applied in the diagonal dimension for two reasons.
Firstly, diagonalization by construction will tend to produce
a banded matrix around the main diagonal for well-behaved
ECG data with moderate time-frequency dispersion. Hence
RLE applied to main diagonal and off-diagonals will natu-
rally compress this representation in an optimal fashion. Se-
condly, since ECG data is strictly real, the 2D spectrum
is symmetrical and we can discard half of the coefficients
without loss of information—i.e. the symmetry around the
diagonal maps nicely to encoding in the diagonal dimension.

To elaborate further, since the elements of the original
square matrix are real, the DFT only needs to be performed
to produce the elements of the left half of the transformed
matrix. This is because the elements of the right half of the
transformed matrix can be obtained from those of the left
half through the conjugate symmetric property of the 2D
Fourier operator. That is, if we define a centered coordinate
system of the elements of the transformed matrix H(x, y),
then H∗(x, y) = H(−x,−y) (where ∗ denotes conjugation).
This symmetry in the transformed matrix is called upon
while performing RLE in the diagonal direction.

It will be demonstrated in the evaluation section that such
bitmap encoding results in a very small amount of metadata
overhead that needs to be reliably communicated to the re-
ceiver. Upon transmission and after wireless propagation,
the receiver will then reconstruct the 2D spectrum from the
bitmap of active (i.e. retained) coefficients and a sequence
of complex coefficients.

In order to tie up all the concepts discussed so far, figure 4
depicts a block diagram representation of the end-to-end sy-
stem which begins with ECG source coding, followed with
channel transmission and reception, and onto final ECG re-
construction. Specifically, the incoming ECG stream is first
packed into square matrices using either the native period of
the signal or interleaved downsampled phases incorporating
high- or low-latency restructuring. Secondly, the square ma-
trices are subjected to the Fourier transform to produce 2D
spectra which are in turn thresholded. The resultant sparse
matrices are denoted in figure 4 by a hinton diagram with a
main diagonal, a subdiagonal, and a superdiagonal. Thirdly,
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Figure 4: End-to-end system block diagram: joint source-channel coding.

the sparse matrix is next RLE-encoded to produce metadata
describing the exact layout of active, retained coefficients.
Fourthly, the active coefficients and metadata are transmit-
ted over a noisy channel and subsequently received by the
basestation. Upon reception, the basestation utilizes me-
tadata to populate a matrix with the stream of transform-
domain coefficients to form a reconstruction matrix. The
reconstruction matrix is then subjected to the inverse Fou-
rier operator used at the transmitter in order to obtain the
ECG samples. Depending on the employed packing at the
transmitter, the basestation may have to de-interleave the
reconstructed ECG samples before finally arriving at the in-
tended ECG waveform.

3. SCENARIO
To better motivate the proposed cross-layer coding, we

present a concrete scenario in order to underscore the need
for compression within the context of a scalable and robust
medical use case.

A typical wireless vital signs monitoring system is requi-
red for patients in a hospital at risk of deterioration having
undergone serious medical procedures e.g. organ transplant.
A heavily instrumented intensive care unit costs an order of
magnitude more per-bed and per-night compared to say a
general ward. Wireless vital signs monitoring with critical
ECG streaming provides an early detection mechanism in
case of a relapse for subsequent rapid medical intervention.
Specifically, the use of ECG streaming, rather than just a
snapshot of the heart rate, permits elaborate server-based
algorithms to look for additional early warning features; a
recent record of ECG waveform preceding an alarm can also
greatly aid initial diagnosis.

Hospitals have also a set of requirements which translate
into technical specifications for a wireless vital signs moni-
toring system aspiring for real-world deployment. For in-
stance, in UK national health service (NHS) hospitals, a
single network access point for a general ward is needed to
minimize infrastructure requirements. Fairly typical in NHS
hospitals, up to 32 co-located patients can share a ward and
the variable ward size implies a range of 30m can be neces-
sary.

Having established the need for ECG streaming within a
patient deterioration monitoring context, we turn next to

expose numerically an example of a link budget to justify
our proposal. First, we have 12-bit ECG words at 256 sam-
ple per second (sps) rate (even 512sps for diagnostic-grade
monitoring, see 201.12.4.107.3 in [4]). So we have 3,072 bit
per second (bps) per patch, or ∼100kbps at the access point
from 32 patients—not including other vital signals or ac-
counting for local storage when the link goes down. Inclu-
ding these extra items results in close to 160kbps for 32 pa-
tients. We then include margin for robustness, and assume
that we only have a clear channel for 1/3 of the time, so we
get close to 500kbps needed at the access point (1Mbps for
remote diagnostic-grade monitoring, or 3-lead ECG requi-
ring 2 sensor channels).

Proceeding to exact link budget numbers, in order to
obtain 500kbps using the crowded 2.4G band (thus justifying
at least the 3× margin above), we need a signal bandwidth
in the 1MHz region. At the same time, we require an ultra
low-power wireless protocol, which mandates using a rela-
tively simple modulation & coding scheme (i.e. cannot ex-
pect to use say 16- or 64-QAM). Thus, bluetooth low energy
(BLE) or IEEE 802.15.6 would suit our scenario. BLE can
deliver 500kbps throughput at 30m with ∼2dB margin (un-
der line of sight (LOS) assumption). 15.6 RATE3 (QPSK)
can do the same at 30m with ∼5dB margin (under line of
sight (LOS) assumption). So far, no compression has been
assumed for the aforementioned ultra low-power protocols.
However, the key point here is: if we want to guarantee a
certain level of QoS in a medical mission-critical vital signs
monitoring system, then we should aim for much more mar-
gin to allow for non-LOS channels. Hence we need more ro-
bust modulation (more coding/spreading, lower-order con-
stellations), which means reduced throughput. Therefore, in
order to enable our scenario with high reliability in the cro-
wded 2.4G band, we must reduce our required data rate by
means of ECG compression. Moreover, the linearity of our
proposed cross-layer coding lends itself to realizing degra-
dable ECG waveform delivery whereby the scalability and
robustness of the vital signs monitoring system could be vas-
tly improved—allowing for increased number of users (pa-
tients), increased sampling rate (remote diagnostic-grade),
increased sensor channels (12-lead ECG), or a combination
thereof.



4. EVALUATION
The proposed diagonalization-based compression is tes-

ted next on a range of ECG signals. The aim is to inform
future research & development on diagonalization’s ability
to energy-compact ECG signals and encode their features
across a representative set of morphologies. To this end,
two groups of synthetic ECG signals are utilized: (1) nor-
mal sinus rhythm dataset consisting of 120 epochs4, and (2)
arrhythmia dataset consisting of 62 epochs.

4.1 Normal sinus rhythm
Method: Patient simulator datasets by Rigel Medical [18]
contain 12 normal sinus rhythm conditions which are the
permutations of four heart rates (HR) and three amplitudes
(AMP). Specifically, HR ∈ [30, 70, 120, 210] bps and AMP ∈
[0.5, 1, 4] mV. Each condition has 10 epochs, making the
overall epoch count equal to 120.

The characterization results are obtained per condition
in groups of 10 epochs. The casting of data into circulant
matrices will attempt to use as much of the available data
as possible.

QRS complex detection functionality in this investigation
was simulated by simply measuring the distance in samples
between two consecutive ECG peaks in order to determine
periodicity and match the square matrix dimensions to this
periodicity. The sampling rate for all patient simulator da-
tasets is 256 Hz.

Results: To provide a fine-grained feel for results, we will
be examining the statistics of our ECG metrics of choice
through the cumulative distribution function (CDF) and the
complementary cumulative distribution function (CCDF).
In figure 5a, the CCDF provides a quick pictorial evaluation
of how often CR exceeds a certain target value across all
ECG data in normal sinus rhythm. For instance, while the
average CR is around 11x, it is well above 11x across just
under half of the whole dataset. Similarly, the CDF of the
PRD is also shown in figure 5b. The CDF elaborates on
the fine-grained PRD performances across all ECG data in
normal sinus rhythm, which again fared better than its 3.6%
average across half of the dataset. Lastly in figure 5c, while
metadata is implicitly included in CR figures, we choose
to highlight the statistical trends of metadata across the
dataset explicitly. Metadata amounts to under 1.6% of the
total Tx data (coefficeints + bitmap) at 50 percentile and
to just under 4% of total at 95 percentile confidence.

4.2 Arrhythmia
Method: SimManR© patient simulator datasets by Laerdal
Medical Limited [13] contain 11 arrhythmia conditions with
variable number of epochs. These are summarized in ta-
ble 1 for convenience. The keen reader is referred to [17] for
further medical explanation and background on these con-
ditions.

The restructuring of signals follows the same convention
described earlier. In situations where the ECG signal is
aperiodic, such as some atrial or ventricular fibrillations, an
arbitrary, suboptimal size is chosen for the packed square
matrix prior to diagonalization.

The sampling rate for all sets is 250 Hz.

Results: In aperiodic conditions, the packed square ma-
trix dimensions are no longer matched to a fixed period.

4an epoch is 30 seconds of ECG samples

Table 1: SimManR© dataset summary

Conditiona # of
epochs

Description

AF 75 5 atrial fibrillation
AF 90 6 atrial fibrillation
AF 160 8 atrial fibrillation
AFL 150 7 atrial flutter
NSR STdepressed 145b 8 normal sinus rhythm
NSR STelevated 60b 5 normal sinus rhythm
NSR STelevation 200b 6 normal sinus rhythm
VF NAc 1 ventricular fibrillation
VF NAc 2 ventricular fibrillation
VT 180 6 ventricular tachycardia
VT 240 8 ventricular tachycardia
a Number following underscore refers to ECG rate
b ST denotes a segment in the ECG that can become

elevated or depressed in the presence of dangerous heart
conditions

c NA means that these conditions have no discernible fixed
periodicity

This causes diagonalization to fail to localize dominant coef-
ficients in a diagonal fashion in the transform domain. In
turn, CR drops markedly compared to the earlier normal si-
nus rhythm results. Additionally, the cost of diagonal RLE
increases too owing to the absence of diagonally extending
runs of coefficients in the transform domain. However, it is
interesting to observe that a useful compression performance
is nonetheless obtained. This is evident from inspecting the
CR CCDF of figure 6a whose average is around 7.2x, but
with only one-third of the whole dataset being better than
its average. The CDF of the PRD in figure 6b across all
ECG data in arrhythmia averages at around 8.5% with half
of the dataset faring better. The metadata statistics in fi-
gure 6c displays a strong trend of increased bitmap cost in
arrhythmia as evident from the lazy rise of the CDF; me-
tadata amounts to greater than 3% of the total Tx data at
50 percentile nearly double that of normal sinus rhythm but
eventually stabilizes around the 4% mark at 95 percentile
confidence.

4.3 Artefact filtering
To recap, the proposed linear coding casts the ECG signal

as an image to encode its features as spatial frequencies. The
symmetry due to diagonalization is why metadata is gene-
rated from RLE in the diagonal direction. However, mostly
due to artefacts, there are sometimes “baseline” signal fea-
tures that are manifested on the first row and column (akin
to DC frequencies in 1D). Strictly speaking, these are not
important in the sense that they do not encode the clinically
salient features in ECG. To explain visually, the following
example is provided:

It can be seen from figure 7 that the matrix on the left
(figure 7a) has an almost full 1st column (1st vertical black
stripe) compared to the matrix on the right (figure 7b) where
the 1st column and 1st row are trimmed. The conjugate
symmetry around the origin described earlier applies to the
matrix on the right i.e. the thresholded matrix minus “ba-
seline features” row and column. The 1st row and 1st co-
lumn are conjugate symmetric w.r.t. themselves (also the
diagonal similar to a normal 1D spectrum). That is, if me-
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Figure 5: CR CCDF, PRD CDF, and metadata CDF for normal sinus rhythm conditions.
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Figure 6: CR CCDF, PRD CDF, and metadata CDF for arrhythmia conditions.

(a) Thresholded matrix. (b) Thresholded matrix wit-
hout 1st row and 1st column.

Figure 7: Removing baseline features from thresholded
transform-domain matrix.

tadata were to include these baseline features, only half of
each would have to be encoded by RLE, which is a trivial
addition to metadata.

The interesting issue is: do we really need these features?
If anything, these baseline features are likely to be genera-
ted by ECG data artefacts (e.g. motion artefact). In this
example, the artefact is a combination of: (1) a decaying
electrical discharge originating from the analogue conditio-
ning circuitry when it is first switched on per epoch and (2)
DC offset level. If the ECG signal were to be reconstructed
from the thresholded matrix without including the baseline
features of 1st column and 1st row (which are responsible
for the decaying discharge and DC, respectively), one would
get the blue, zero-centered ECG signal in figure 8.

As depicted in figure 8, setting the 1st column and 1st
row of the thresholded matrix to zero instead of using their

Figure 8: ECG reconstruction snippet with (red) and wit-
hout (blue) baseline features.

actual coefficients in reconstruction has in effect “filtered”
the ECG signal. The clinical features of the QRS complex
of the ECG reconstructed signal are not affected; what have
been filtered out are the DC level and the decaying electrical
discharge.

Communicating these baseline features part of the transform-
domain coefficients with the requisite addition to metadata
is optional. The preconditioning of ECG signals prior to di-
agonalization possibly with enhanced sensor interface ana-
logue front-end circuitry may alleviate to a large extent this
issue altogether. Ultimately, this is likely to be a biomedical
signal processing decision since medical practitioners tend to
at times insist on replicating faithfully the raw ECG signal
along with its nuances and artefacts.



4.4 Latency reduction
As discussed in section 2.1.1, we next turn to demonstrate

the flexibility afforded by the interleaving-based packing ap-
proach. Specifically, we give a flavour for the high-latency
and low-latency modes of interleaved packing depicted in
figure 3 by presenting a concrete numerical example.

In the first three sets of normal sinus rhythm conditions
({1-10}, {11-20}, and {21-30}), the ECG data has a cycle
periodicity of 515 which can be downsampled by 5 in order
to transform the original stream into 5 substreams with 103
periodicity corresponding to phases 0, 1, 2, 3, and 4. These
substreams are then packed individually into 5 approximate
circulant matrices. With a sampling rate of 256 Hz, the
block latency of such packing is therefore 5×1032/256 ≈ 207
seconds. Such high latency may or may not be appropriate
for a given use case.

(a) High-latency circulant. (b) Low-latency circulant.

(c) High-latency thresholded. (d) Low-latency thresholded.

Figure 9: Matrices: high-latency vs. low-latency.

Instead of downsampling the entire ECG stream and packing
the resulting phases per matrix, we can further interleave
the downsampled phases into one matrix. Such packing has
the advantage of filling a circulant matrix sooner so that
diagonalization may commence, reducing compression la-
tency. Specifically, the latency now becomes 1032/256 ≈ 41
seconds—a factor of 5 reduction compared to earlier. Con-
ceptually, this interleaved packing is also justified on the
grounds of effectively extracting “intra-cycle” correlations
and encoding these correlations as spatial frequencies. This
is a valid assumption in biomedical oversampled ECG wa-
veforms as mandated by medical standards.

Figure 9a illustrates one circulant submatrix packing in
high-latency mode. The horizontal stripes here corresponds
to the decaying electrical discharge we discussed earlier, occur-
ring regularly every epoch. In contrast, the low-latency
packing mode of figure 9b depicts a circulant submatrix
with only one decaying electrical discharge visible. This is

because five downsampling phases now participate in low-
latency packing, allowing for only one decaying electrical
discharge to take place before the submatrix is filled. In-
specting the corresponding thresholded matrices of the high-
latency and low-latency packing of figures 9c & 9d (respecti-
vely), we notice a “continually banded” energy in diagonali-
zation in low-latency mode as opposed to a dominant cluster
around the main diagonal in high-latency mode. This is due
to the intra-ECG cycle repetitive pattern being decomposed
into significant 2D spatial frequencies.

To investigate any potential performance implications when
performing lower-latency, “intra-cycle” diagonalization, ta-
ble 2 presents the compression metrics, again performed
across the first three sets of normal sinus rhythm conditi-
ons.

Table 2: Performance comparison: high-
latency vs. low-latency

CR (x) PRD (%)

LatencySet
high low high low

11.8 14.4 3.55 3.23
12.0 14.6 2.68 3.21
12.5 11.8 3.16 3.32
12.4 17.2 2.48 3.01
12.2 11.9 4.09 3.36{1

-1
0
}

7.3 9.8 4.32 4.41
7.4 9.1 3.24 3.77
7.1 7.0 3.58 3.57
7.2 7.5 3.58 3.69
7.2 7.8 4.21 3.65{1

1
-2

0
}

3.9 4.5 5.94 5.25
4.0 4.3 4.37 5.26
4.0 3.5 4.63 5.08
3.9 4.2 3.95 4.87

{2
1
-3

0
}

3.9 3.3 5.88 4.73

Comparing the compression and distortion figures of high-
latency and low-latency packing, no immediate performance
penalty seems to have been incurred. In fact, fluctuations
aside, low-latency has at times—e.g. 4th subblock in 1st
set and 1st subblock in 2nd set—improved CR markedly.
This is attributed to reduced fast transitions (i.e. decaying
electrical discharge) within a subblock as a result of denser
interleaved packing as visible from figures 9a & 9b.

4.5 Summary
The average performance in terms of CR and PRD for the

two datasets studied earlier is summarized in table 3.

Table 3: Overall performance summary

Dataset CR (x) PRD (%)
µ σ µ σ

Normal sinus rhythm 11.64 7.08 3.60 0.89
Arrhythmia 7.22 2.47 8.46 1.11

The combined average CR of around 9x outperforms the
much lighter-weight CORTES algorithm [2] which has been
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Figure 10: CR and PRD trade-off curves for normal sinus
rhythm (blue) and arrhythmia (red).

evaluated internally by the biomedical team on the same da-
tasets with an average CR of around 5x. Interestingly, the
real-time computational requirements of the proposed ECG
compression were found to be of the same order as that
of CORTES which performs minimal digital signal proces-
sing (DSP). The evaluation was conducted on a leading-edge
embedded low-power platform with dedicated built-in DSP
acceleration capabilities. However, the early stage evalua-
tion did not account for matrix packing overhead required
when FFT sizes (i.e. ECG periodicities) were not in ex-
act power of two increments. Ultimately such issues can be
largely mitigated by purpose-built hardware acceleration.
CORTES, however, has the advantage of being amenable
to compressing shorter segments of ECG data. Conver-
sely, CORTES falls short at faithfully reproducing certain
arrhythmia waveforms, impeding many diagnostic functio-
nalities. A comparative study of the proposed cross-layer
ECG coding is beyond the scope of this paper; we simply
touch on certain relevant aspects in the course of the discus-
sion to give the reader a feel for issues often encountered in
this large body of literature.

For completeness, the various latencies incurred as a re-
sult of the diagonalization-based compression for all data
is tabulated in table 4. The trade-off curves between CR
and PRD are depicted in figure 10 for the two studied data-
sets. A lazier CR rise when relaxing PRD can be noted for
arrhythmia. This is attributed to the non-ideal diagonaliza-
tion and its reduced compression performance in aperiodic
cases.

4.6 Discussion
Some commentary on the proposed cross-layer coding is

supplied next.
Employing interleaved matrix packing has been shown to

afford significant latency reduction compared to populating
period squared number of samples. However, the method
still incurs of the order of seconds worth of latency in order
to extract intra- and inter-ECG period correlations. There-
fore, in applications where true real-time ECG waveform is
required—e.g. a medical telemetry system aimed to replace
an expensive bedside monitor in an intensive care unit—
other low- or zero-latency methods will be more appropri-
ate. See for instance [23] for a cautionary note targeted at

Table 4: Overall latencies

Set Latency
(sec)

Set Latency
(sec)

Epochs{1-10} 207.2 Epochs{1-5} 80.0
Epochs{11-20} 207.2 Epochs{6-11} 129.6
Epochs{21-30} 207.2 Epochs{12-19} 168.1
Epochs{1-10}a 41.4 Epochs{20-26} 40.0
Epochs{11-20}a 41.4 Epochs{27-34} 41.6
Epochs{21-30}a 41.4 Epochs{35-39} 125.0
Epochs{31-40} 189.0 Epochs{40-45} 22.5
Epochs{41-50} 189.0 Epochs{46} 25.6
Epochs{51-60} 189.0 Epochs{47-48} 40.0
Epochs{61-70} 64.0 Epochs{49-54} 28.9
Epochs{71-80} 64.0 Epochs{55-62} 16.9
Epochs{81-90} 64.0
Epochs{91-100} 20.8
Epochs{101-110} 20.8

N
o
rm

a
l

si
n
u

s
rh

y
th

m
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medical staff to disseminate awareness regarding latency of
ECG hospital telemetry systems. Thus the proposed cross-
layer coding would be more approperiate for a class of ECG
streaming applications where higher latencies can be tole-
rated such as Holter systems [12] or the use case scenario
elaborated on in section 3.

Metadata is key for the successful reconstruction of the
diagonalized matrices. Two approaches can be utilized to
guarantee the integrity of metadata: (1) forward error cor-
rection (FEC) and (2) added link budget. The latter is
perhaps easiest to realize in a prototype system since meta-
data constitute a tiny fraction of the transmission stream.
As such metadata can be allocated redundant budget in the
most simplistic of implementations. In our system, we have
found empirically that 3x link budget allocation probabilis-
tically guarantees a near perfect information delivery.

In principle, the proposed diagonalization-based compres-
sion framework can be further leveraged for other perio-
dic medical bio-waveforms such as a PPG (photoplethysmo-
gram) signal—i.e. values which encode estimates of the
amount of oxygen in the patient’s blood—especially within
the context of BANs. As such, BANs proneness to large
pathloss variabilities can be combated by means of degrada-
ble signal delivery in order to enhance the overall network
robustness and scalability.

5. RELATED WORK
A variety of compression methods for ECG signals are tre-

ated in prior art. Broadly, these methods fall under two ca-
tegories: lossless and lossy. Examples of lossless algorithms
include Huffman [10]. Lossy algorithms are subdivided furt-
her into waveform-based and transform-based methods. In
methods based on the ECG waveform, clinically salient fea-
tures are identified in order to retain only a subset of samples
sufficient to approximate the original ECG waveform. Ex-
amples of a waveform-based methods include CORTES [2].
Transform-based methods take the ECG signal to another
domain for systematic, feature-agnostic processing such as
wavelet [9, 25] and Fourier [14]. A combination thereof is
also possible in a hybrid fashion [12]. To the best of our kno-
wledge, degradable joint source-channel coding has hitherto
not been treated in the context of wireless ECG streaming.



We draw inspiration from two seminal works on graceful
wireless mobile video, both utilizing 3-dimensional (3D) dis-
crete cosine transform (DCT) in their respective systems [11,
3]. We also draw inspiration from the domain of wireless
OFDM equalization, and specifically the step of building
interference matrices, time-selective in [19] and frequency-
selective in [16]. In a nutshell, the work presented herein is
a synthesis of all-wireless concepts from [19, 16, 11, 3].

6. CONCLUSIONS
This paper presents a linear coding method that lends it-

self to cross-layer design for mobile wireless ECG streaming
in BANs. The method is a key enabler for realizing a grace-
ful ECG wireless monitoring wherein BAN QoS is enhanced
beyond current state-of-the-art systems. This enhancement
will come about through the ability of BAN to self-adjust to
infrequent erroneous transmissions by introducing propor-
tional degradation to ECG, thereby maximizing scalability
and robustness. This is to be achieved capitalizing on our
proposed linear joint source-channel ECG coding, which we
show to perform competitively in terms of ECG compression
metrics.
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APPENDIX
A. ASSORTED SELECTION OF

DIAGONALIZED MATRICES
For the benefit of interested parties, we provide an assor-

ted selection of examples of diagonalized transform-domain
matrices in figure 11 as encountered during the characteri-
zation conducted on normal sinus rhythm and arrhythmia
datasets. Emphasis is placed on the more exotic-looking ex-
amples to cement the reader’s intuition on inner-workings of
the proposed coding method. For instance, it can be readily
seen in figures 11b, 11j, and 11k that diagonalization has
failed to produce diagonally-extending runs of transform-
domain coefficients in one atrial fibrillation and two ventri-
cular fibrillation cases, respectively. Nonetheless, large areas
in these matrices are thresholded out and as such useful com-
pression is obtained.



(a) AF 75 (b) AF 90 (c) AFL 150 (d) AFL 160

(e) NSR STelevated 60 (f) NSR STelevation 200 (g) NSR STdepressed 145 (h) VT 180

(i) VT 240 (j) VT NA (k) VT NA (l) PS 1

(m) PS 3 (n) PS 11 (o) PS 12 (p) PS 7

Figure 11: Examples of diagonalized transform-domain matrices (not to scale).


