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ABSTRACT
Inertial measurement units (IMUs) afford the problem of locali-
sation unique advantages owing to their independence of costly
deployment and calibration efforts. However, IMU models have
traditionally suffered from excessive drifts that have limited their
appeal and utility. Newer machine learning (ML) approaches can
better model and compensate for such inherent drift at the expense
of (i) increased computational penalty and (ii) fragility w.r.t. changes
in the signal profile that these ML models have been trained on.

In this paper we propose an edge cloud-based inertial track-
ing architecture that overcomes the above limitations. Our IMU
tracking cloudlet is comprised of: (i) an on-device component that
compresses inertial signals for wireless transmission, (ii) a cloud-
side ML model that tracks the temporal dynamics of inertial signals,
and (iii) a cloud-side deep latent space tracking in order to seam-
lessly manage model adaptation—i.e. to mitigate the fragility of ML
over-specialisation. Early evaluation demonstrates the feasibility
of our approach and exposes items of future research.
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• Computing methodologies→ Learning latent representations;
Distributed computing methodologies; • Networks → Location
based services.
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1 INTRODUCTION
An arsenal of localiser modalities has greatly advanced the prob-
lem of indoor and outdoor tracking, albeit with various modality-
specific pros and cons. Of such modalities, inertial tracking is es-
pecially intriguing owing to its infrastructure-less appeal; Inertial
tracking indoors does not rely on costly deployment and calibra-
tion effort. Particularly, in a multi-modal system—e.g. autonomous
robot employing vision-inertial or radio-inertial dual perception
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configuration—an inertial measurement unit (IMU) can help main-
tain a level of service under momentary occlusion and/or a low SNR
regime because of its relative independence of dynamic environ-
mental conditions. Such unique behaviour is crucial for closing the
tracking performance gap (or error long tail) that has hitherto hin-
dered the flourishing of indoor location-based services compared
to their outdoor counterparts.

In this paper we set out to instantiate an IMU industrial-grade
asset tracker that is scalable (i.e. configurable) across many differ-
ent usage scenarios. A configurable inertial tracker will naturally
aid in supplying accurate and reliable localisation, part of a suite
of localiser modalities. To this end, we adopt a cloudlet architec-
ture [23] and call our system IMULet.1 IMULet achieves two main
design objectives: (i) ultra-low power operation for aggressively
extending the battery life of asset tracking tags, and (ii) adaptive
model customisation in order to overcome signal heterogeneity and
to ensure the inertial tracking model is appropriately matched to a
given motion profile and/or device characteristics.

Traditional hand-crafted inertial trackers, such as pedestrian
dead reckoning (PDR) methods, are hard to tune [5]. Further, they
exhibit excessive error growth owing to their cumulative integra-
tion errors. Recent advances in ML-based inertial navigation has
demonstrated improved ability to capture and compensate for such
cumulative integration errors through a sequence-based learning
formulation [6]. However, inertial signals are characterised by dis-
tribution variabilities e.g. as a result of device heterogeneity or
owing to changes in their motion profile—together referred to as
domain shift. Such domain shift makes ML models hard to gener-
alise without extensive adaptation [28].

ML inertial trackers can be interpreted as an over-specialised
approach to inertial modelling whereby additional data-driven2
priors are ingested in order to further constrain and enhance es-
timation. Invariably, performance gains from over-tuning come
with susceptibility to changes in these data priors. That is, a model
specialised for a source domain with certain signal characteristics
(e.g. wheeled robot) will perform adversely on a target domain with
differing characteristics (e.g. parcel carried by a pedestrian).

Generative adversarial networks (GANs) have been shown to
mitigate against such domain shift; however, at the expense of high-
complexity modelling revolving around recurrent neural networks
(RNNs) as building blocks [7]. Such high-complexity models oper-
ating directly on raw IMU signals are hard to employ in ultra-low
power devices [9], as we will discuss in §5. Further, knowing when
to specialise a localiser model without explicit laborious testing
against groundtruth labels remains an open problem [6].

In addressing the aforementioned challenges, IMULet incorpo-
rates novel measures to deploy and adapt inertial ML models on
resource-constrained devices. IMULet strives to simultaneously

1pronounced amulet
2a view we do not necessarily subscribe to. See [20] for a lively debate on this.
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Figure 1: Proposed inertial tracking cloudlet architecture.

maximise the battery life of ultra-low power mobile tags while
offering state-of-the-art inertial tracking performance as well as
seamless domain adaptability. IMULet achieves this through three
key ideas.
(i) Model partitioning. IMULet splits the neural network between
the tag and the edge cloud such that the tag executes a relatively
small workload. The resultant signal representation after on-device
processing significantly reduces the amount of data to be transmit-
ted to the edge cloud compared to raw inertial signals.
(ii) Cloud-side domain alignment. By a careful neural network
design which we will detail, IMULet restricts the task of adapting to
a new motion profile to take place on the part of the neural network
residing in the cloud only. As such, IMULet eliminates or minimises
the need for on-device weights update—be it via on-device compu-
tations or via uplink+downlink edge cloud communications.
(iii) Latent space-based tracking. IMULet detects an event of
anomalous inertial signals that the model has not been trained
on by tracking the deep latent space residing in the edge cloud.
Upon such anomalous event, the adaptation process of the model
is triggered. Tracking the latent space has the advantage of being
robust and entirely cloud-based, thereby costing no energy penalty
and maximising tag battery life.

The combination of these three ideas allows IMULet to meet
the aggressive performance, energy efficiency, and small form fac-
tor demands of low-cost industrial asset tracking tags. As such,
IMULet enhances the opportunities to scale asset tracking tags
up or down in order to address wider use cases and/or industrial
market segments.

We proceed next to establish the need to adopt an edge cloud
approach for IMU tracking.

2 THE CASE FOR IMU CLOUDLETS
The ML model and latent space tracking are key parts of our pro-
posal as they provide the capabilities for adaptive, infrastructure-
free IMU tracking. However, these capabilities alone do not guar-
antee a feasible real-world solution. In fact, the increased com-
putational complexity of the ML model comes with the risk of
introducing compute and/or communication latency and consum-
ing too much power on the envisioned ultra-low power tags. These
risks may result in higher error rates, or even system failure.

A cloudlet is a software architecture that mitigates against risks

associated with compute-intensive, bandwidth-hungry, and latency-
sensitive applications [12, 23]. A cloudlet architecture provides a
separation of concerns in order to reduce various delays present
in the end-to-end path between system components: from captur-
ing on-device data to the application that consumes this data. For
IMULet, a cloudlet architecture will overcome the barriers associ-
ated with ultra-low power trackers by allowing them to continue to
operate on compute- and energy-constrained hardware irrespective
of data acquisition rate and the computational burden of modern
ML models. Crucially, to overcome the problem related to latency,
a cloudlet ensures that communications between the device and
the model occurs as fast as possible in order to push the envelope
of IMU tracking performance.

In what follows we describe the impact of latency upon the IMU
tracking architecture, citing current industry best practices and
based on published latency figures from Microsoft Azure. Compute
requirements are then highlighted. Together, latency and compute
demonstrate the need and feasibility of an IMU tracking cloudlet
architecture.
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Figure 2: Illustration of IMU signal segmentation with window
overlap along with two networking hops, where hop 0 is a wireless

transmission between the IMU and a gateway, and hop 1 is a
round-trip communication between the gateway and a remote

cloud.

Network latency. A cloudlet can significantly reduce the network
latency, thereby enhancing IMU tracking rate. To see this, let us
consider a low-end IMU operating at a nominal 100Hz sampling fre-
quency i.e. 𝑇𝑠 = 10ms sampling period. As shown on the left hand
side of Figure 2, a signal overlap of Δ𝑡 between two consecutive
windows𝒘𝑘 and𝒘𝑘+1 is utilised in order to enhance displacement
estimates. Assuming a moderate Δ𝑡 = 5𝑇𝑠 , the hard requirement
for the end-to-end (E2E) system delay becomes 50ms. We will de-
fine E2E latency as the network round-trip time (RTT) + compute
time [12]. In order to drive the discussion, let us also assume an IMU
sensor data transmission over WiFi and a back-end cloud hosted
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C E E2 NC SC WC W W2

C 25 30 10 24 22 40 36

E 6 20 34 40 63 62

E2 24 28 44 62 66

NC 32 24 50 44

SC 24 36 44

WC 26 22

W 22

W2

Figure 3: The monthly average round-trip time (RTT) between
Azure regions as measured by ThousandEyes [19]. C, E, E2, NC, SC,
WC, W, and W2 are respectively central, east, east 2, north central,

south central, west central, west, and west 2.

on Microsoft Azure. The overall network delay now involves two
hops: (1) wireless IMU → gateway and (2) RTT gateway ↔ cloud
as depicted in Figure 2. First, the 90th percentile WiFi latency is
around 20ms based on empirical evaluation done in [25]. Second,
the average Azure RTT between data centres located in various US
regions is around 34ms; An excerpt from [19] for the breakdown of
US inter-region RTT is reproduced in Figure 3. Careful cloud instan-
tiation may optimise for cloud latency given application geography.
As such, we would expect to have enough margin to guarantee
meeting the above stated E2E delay requirement of 50ms, given the
two-hop networking overhead of a conventional cloud architecture.

Now consider that the 90th percentile WiFi latency is even worse
in the lower power 2.4GHz band [25]. Other IoT wireless protocols
typically slacken latency further in favour of power optimisation
e.g. as in the 900MHz band [1]. Further, higher-end IMU’s have
even higher sampling rates e.g. 400Hz–2kHz [16]. As such, E2E
system delay requirements may become significantly tighter, thus
necessitating adopting an edge computing approach over a network-
bottlenecked conventional cloud [12, 23]. This is especially the case
when the IMU cloudlet is a subsystem that interfaces with a broader
multi-modal tracker involving high-rate vision and radar as in [4].

Compute time (ms) – mean/standard deviation (𝜇/𝜎)

Hardware Intel Core i7 NVIDIA GeForce
RTX 2080 Ti

Batch size single batched single batched
512 1.62/0.31 51.88/2.49 0.91/0.07 1.07/0.13
256 2.22/0.91 31.29/2.65 0.88/0.08 1.04/0.09
128 2.45/1.45 15.51/2.26 0.89/0.12 1.00/0.10

Table 1: Scalable inferences through GPU batch processing.

Compute scalability. A cloudlet leveraging commodity GPU’s
can offer vast IMU tracking scalability at minimal compute delay.
To see this, we measured the inference time of the overall proposed
neural network3, with and without GPU acceleration. We further
repeated the experiments for both single- and batch-processed in-
ferences. Results are shown in Table 1. On a standard laptop Intel
processor, single inferences took approx. 1–2ms to compute, while
batch processing of multiple measurements scaled poorly owing to
the inability of generic CPU architecture to capitalise on parallelism.
3whose details we treat in subsequent sections

In contrast, batched inferences were executed on the NVIDIA RTX
2080 Ti GPU over approx. 1ms irrespective of how many measure-
ments were processed concurrently. This suggests that the modestly
priced RTX 2080 Ti GPU may be sufficient to service a warehouse
with hundreds of high-rate IMU tags comfortably.

3 CLOUDLET ARCHITECTURE
We next describe the three design techniques IMULet incorporates
in order to realise an adaptive and scalable inertial tracking couldlet.

3.1 Model partitioning
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Figure 4: Localisation error as a function of the compression
ratio, along with the required on-device compute energy: (a) 95th
%ile distance error in metres on logarithmic scale and (b) energy in
milli-Joules as measured on an NVIDIA Jetson Nano device using a

Keysight N6705C power analyser.

IMULet splits the model between the tag and the cloud such that
the tag executes only the fairly light-weight convolutional (CNN)
section of the model. The CNN acts as an embedding network that
maps the input signals to a low-dimensional space. That is, the
asset tracking tag executes a few dimensionality reduction neural
layers that compress the amount of data to be transmitted to the
cloud compared to raw inertial signals. Such device-cloud model
partitioning is illustrated in Figure 1.

In an end-to-end learning fashion, IMULet can choose to arbi-
trarily compress the raw inertial signals fed to the cloud portion of
model consisting of the RNN and the fully connected (FC) blocks.
The degree of compression is defined by the strides of the convo-
lutions and the number of channels in the output signal. Figure 4
depicts the achieved localisation error as a function of the compres-
sion ratio—defined as the ratio between the sizes of the input and
output matrices—along with its correspondingly required on-device
compute energy. For instance, as per Figure 4(a), around 12cm 95th
%ile localisation error can be traded off for a substantial 11 times
reduction in transmitted signal. The compute energy required by
on-device compression is around 2mJ irrespective of the compres-
sion configuration as shown in Figure 4(b). Out-of-the box and
without optimisation, the energy expenditure of the compressive
CNN amounts to less than 17% of overall network energy; RNN
and FC dominate the full model execution energy. Typically, CNNs
can be numerically optimised further in order to yield large energy
savings e.g. through quantisation in [13].

There are, however, a number of ways in which design decisions
for on-device compute may interact with the cloud portion of the



HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom Mohammed Alloulah and Lauri Tuominen

model. For example, the quantisation dynamic range when trans-
mitting over the wireless channel is one important design aspect
to consider [17]. In turn, the cloud-side of the model could be ren-
dered less sensitive to such quantisation effects using a variety of
ML techniques, the simplest of which is perhaps data augmentation
with on-device representation in order to promote model resilience
to quantisation. Other aspects include the compression of sparsified
signals which may introduce further reconstruction artefacts to the
cloud-side. This emerging design landscape belongs to a so-called
wireless-ML co-design [17].

3.2 Cloud-side domain alignment
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Figure 5: Domain alignment is a training-time intervention
through which two or more signal domains can be made to share
a joint classifier without compromising their individual perfor-
mances shown here as binary class separability.

While the CNN block of the neural network provides initial
signal compression (i.e. on the tag), the rest of the network archi-
tecture including domain adaptation takes place in the cloud. This
reduces the need for weight update of the CNN block, and restricts
adaptation to the cloud side. That is, neither on-device compute
nor uplink+downlink communications to/from the cloud is needed
for domain adaptation. To this end, IMULet leverages a domain
adaptation technique based on optimal transport (OT) [3]. Critically,
IMULet derives a domain alignment loss based on OT for the latent
space residing in the cloud portion of the neural network model
only. As such, the alignment loss does not affect the compressed
representation executed on-device, thereby minimising the need for
frequent updates, which translates into substantial energy savings.

Figure 5 illustrates the general concept of domain alignment as
discussed in [10]. This flavour of domain adaptation attempts to
find a latent space representation that is invariant to domain shift.
This is achieved by training the model with labelled data from one
or more source domains (possibly mixed with unlabelled data) such
that the model is able to generalise to data drawn from any related
but potentially shifted target domain. As such, the joint classifier
boundaries would result in high accuracy irrespective of changes in
input distribution. Note, however, that in contrast to single-source
domain adaptation, IMULet deals with a more general, but related
problem known as domain generalisation. In domain generalisation,
a network is trained jointly on multiple source domains—instead of
one—in order to arrive at a model that generalises well to unseen
target domains [28]. Furthermore, compared to a classifier with
a small discrete number of classes, such alignment is intuitively
harder to achieve when considering the continuous nature of values
position coordinates can assume. That is, in terms of problem-
specific complexities, we are concerned with a localisation MSE

loss which is harder to re-align compared to say a cross entropy
loss for a small finite set of classes. This is further compounded by
the feedback4 as depicted in our model in Figure 1.

Concretely and inspired by [26], IMULet splits the output FC
layer into two as shown in Figure 1. On the one hand, [26] suggests
that aligning the latent spaces of deeper layers is more effective
for domain invariance since deep layers will more fully capture the
semantics of a given physical phenomenon. On the other hand, at
the final output (i.e. displacement estimate), the latent space rep-
resentation is too truncated for effective alignment as it no longer
carries “soft” inter-domain information. That is, IMULet seeks a
deep layer with sufficient high-dimensionality in order to manip-
ulate at training-time for domain invariance. This is achieved by
optimising over a loss that incorporates a domain mismatch term
as well as an MSE localisation term. For example, the LSTM may
output a 1600 dimensional vector that forms an input to a first FC
layer5 whose output is 64 dimensional vector, followed by a second
FC layer that transforms into Cartesian coordinates. Here, the 64
dimensional latent space may serve as a good balanced representa-
tion for optimising for domain invariance. Mathematically, we can
write a combined loss expression as

L = Lregression + Lalignment (1)

where Lregression is computed at the output of the 2nd FC whereas
Lalignment is computed at the output of the 1st FC. In practice,
the multipliers 𝜆regression and 𝜆alignment are further used as hyper-
parameters. Note that the alignment loss can be computed either
under a supervised configuration, under unsupervised one, or a com-
bination thereof subject to performance and system architecture
constrains. Mixing labels and surrogate labels in the regression loss
is a standard technique for combating catastrophic forgetting [3].
The loss may also incorporate other terms not shown above e.g.
to promote reconstruction, adversarial loss [15], etc. Additionally,
the internal learnt representation of the neural network can be
Cartesian, polar, or quaternion.
Multi-domain scalability. The OT formulation IMULet employs
is domain scalable [3]. Meaning, IMULet alternates between training
a joint localiser and aligning for domain invariance. IMULet sched-
ules many domains to partake in the joint training procedure that
preserves the multi-domain discriminative information while opti-
mising for multi-domain alignment.

3.3 Latent space-based anomaly detection
This is where enforcing the geometric OT structure on the latent
space during training pays dividends. When the model encounters
anomalous inertial signals not seen during training, model adap-
tation is initiated by tracking the deep latent space residing in the
cloud. Latent space tracking is robust and entirely cloud-based; thus
it has no implications on tag battery life.

Figure 6 shows an example of latent space tracking. A previ-
ously adapted model is fed new unseen inertial signals from a
wheeled motion profile6, denoted by D6 in Figure 6(b). Because
the model has not seen this motion profile before, its t-SNE latent
space embedding is not evenly spaced, as highlighted in Figure 6(a).
4both LSTM states and previous estimated displacement coordinates
5highlighted in light blue in Figure 1
6i.e. trolley in [8]
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(a)

D1 D2 D3 D4 D5 D6

D1 -91.3 -38.3 -37.3 -33 -34.6 -31

D2 -38.3 -91.6 -38.3 -32.6 -36.3 -30.8

D3 -37.3 -38.3 -91.2 -32.4 -35.8 -30.8

D4 -33 -32.6 -32.4 -91.8 -29.8 -28.9

D5 -34.6 -36.3 -35.8 -29.8 -91.8 -30.6

D6 -31 -30.8 -30.8 -28.9 -30.6 -91.2

(b)

Figure 6: (a) t-SNE visualisation of adapted deep latent space
showing telltale signatures of unseen motion profile by virtue of

uneven latent space utilisation. (b) The deep latent space
corresponding to the unseen domain exhibits large pair-wise
distances to other seen domains which can be accurately

quantified in high dimensions using the Wasserstein distance.
Colour scale is in dB.

IMULet tracks such effect on the latent space in high dimensions
using the Wasserstein distance7:

W(𝜇, 𝜈) = argmin
𝛾 ∈Γ (𝜇,𝜈)

s.t. 𝛾1=𝜇, 𝛾𝑇 1=𝜈

⟨𝜸 ,C⟩F (2)

where the probabilistic coupling 𝜸 is between two empirical distri-
butions 𝜇 and 𝜈 , Γ is the space of the joint probability distributions
with marginals 𝜇 and 𝜈 , C ≥ 0 is a cost matrix ∈ R𝑛𝜇×𝑛𝜈 represent-
ing the pairwise distances, and ⟨·, ·⟩F is the Frobenius dot product.

Figure 6(b) depicts a domain confusion matrix in decibels com-
puted as Wasserstein distance metrics in high dimensions. It is clear
that domain D6 is the unadapted for domain since it exhibits the
largest pair-wise distances to all other domains as indicated by the
red colour intensity.

That is, information gleaned from the latent spaces can be used
for detecting anomalous asset use and triggering localisation model
adaptation..

4 PRELIMINARY RESULTS
We now discuss preliminary results obtained using the Oxford
dataset for deep inertial odometry [8].

4.1 Qualitative
Figure 7 depicts t-SNE visualisations of six different motion pro-
files i.e. domains for the cloudlet architecture of §3. Specifically,
Figure 7(a) illustrates the t-SNE visualisation for the on-device com-
pressed representation, while Figure 7(b) is for the cloud-side deep
latent space for which domain alignment is performed. The net-
work is adapted to cope better with tag signals from many different
domains. Such adaptation is evident in the fact that the latent space
of Figure 7(b) is more evenly utilised and is shared across many
inertial signal motion profiles. As such, its tracking performance is
likely to be less sensitive to unseen profiles. Without adaptation,
the t-SNE of the latent space exhibits some per-profile clustering
effects as shown in Figure 7(a).

7in discrete form

(a) (b)

Figure 7: Deriving alignment loss for the deep latent space
residing on the cloud-side. (a) t-SNE visualization for the on-device

compressed representation. (b) t-SNE visualization for the
cloud-side deep latent space for which domain adaptation has

been performed.

4.2 Quantitative
The overall tracking performance of IMULet in terms of distance
and heading errors is shown in Figure 8. Trajectory tracking was
characterised on sequences of inertial data 20 seconds in length, and
contained data from six different motion profiles at once [8]. The
95th %ile distance error is under 1m with an average error growth
of 0.5m for all 20-second sessions. The heading performance is
considerably better than distance with the 95th %ile error under
15° and average error growth bounded below 10°.

The generalisability of the cloud-side deep latent space is illus-
trated in Figure 9 by means of the localisation performance for an
unseen domain. The unseen domain is the challenging trolley sce-
nario from [8]. Specifically, it is evident that OT-basedmulti-domain
adaptation applied to the deep cloud-side latent space results in
measurable improvements (especially for the heading performance)
compared to an architecturally identical baseline with unadapted
model.

5 DISCUSSION
Adaptation trigger. The Wasserstein distance becomes less mean-
ingful in higher dimensions [22]. It is therefore important to balance
the need for effective domain alignment with the need for reliable
adaptation trigger mechanism. That is, there exists a tension be-
tween higher dimentionality for effective domain alignment and
lower dimentionality for a robust Wasserstein metric. We have
demonstrated that a sweet spot does exist; however, further inves-
tigations are needed to fully characterise this interplay.
Multi-domain adaptation. Domain translation is the concept of
mapping features from one domain to another. It is widely applied
in computer vision (CV) for image-to-image translation tasks. Do-
main translation can also be used as a domain adaptation technique.
This idea has recently been applied to inertial tracking to tackle the
problem of mapping between signals from different motion profiles
using GANs, with and without paired data [7]. There are two diffi-
culties in adopting such an approach for IMULet. First, as domain
translationmodels rely on having a specific target domain, theymay
not perform as well on completely unseen domains. Second, LSTM-
based GANs operating on raw IMU signals [7] would require either:
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Figure 8: Tracking performance of IMULet. (a) distance error. (b) distance error growth. (c) heading error. (d) heading error growth.

Figure 9: Generalising to new unseen inertial motion profiles is
evident through measurable improvements of localisation perfor-
mance over a naive baseline, especially for heading.

(a) intensive on-device memory and compute resources, or (b) trans-
mitting uncompressed signals to the cloud. Both (a) & (b) we argue
are unsuitable for real-world deployments of ultra-low power asset
tracking tags. In contrast to domain translation or single-domain
adaptation, IMULet extracts domain-invariant features from inertial
signals of multiple domains without compromising the discrimina-
tive content of the learnt representation. This problem is related to
domain generalisation, in which the goal is to decrease a model’s
sensitivity to domain shifts unknown a priori [2, 21, 28]. Zhao et
al. pursue a similar domain generalisability goal using adversarial
training [29]; however, IMULet judiciously enforces a geometric OT
criterion in order to implement the latent space tracking discussed
in §3.3.
Privacy & Security. Tracking the latent space may also afford
opportunities to derive subtle but powerful usage analytics of the
asset to which a tag is attached e.g. a change in the acceleration
patterns of the motor driving a wheeled robot say as a result of
defective mechanics. If viable, the notion of latent space tracking
may also have privacy and security implications beyond model
adaptation which should be investigated.

6 RELATEDWORK
ML IMU. Taking an ML approach to IMU indoor tracking, Ox-
ford University researchers propose an RNN-based, sequence-by-
sequence location estimator operating on raw inertial signals [6, 7].
However, despite out-performing traditional dead reckoning meth-
ods, their architecture is acausal (i.e. incurs latency) and is compu-
tationally too expensive for ultra-low power tags. Trading off per-
formance, a lighter-weight alternative was investigated in [9] using
a WaveNet as an LSTM substitute. Other works opt to aid conven-
tional state-space Kalman formulations with ML-based parametri-
sation e.g. [5].

Split & Federated Learning. The idea of splitting the execution of
a model between a client and a server [14, 18, 27] is a subbranch of
federated learning (FL) [17]. When having a number of pretrained
server-side networks, coarse- and fine-grained matching is per-
formed in order to select the best suited pretrained model given
client-side hidden represenation in order to preserve privacy [24].
Specifically, in contrast to our cloud-side alignment and latent space
tracking, [24] trains autoencoders independently on both the server
and client sides and shares the intermediate hidden representation
of the data for model selection. Joint wireless-FL in which appropri-
ate communication and compute resources are co-designed in order
to meet a certain performance objective in a production system
remains an open problem [17].
Optimal Transport. OT has been used historically to find a “least-
effort” mapping between two resources. However, its use in domain
adaptation is comparatively recent [10]. For image classification,
an OT-based loss function was used to align the latent spaces of
two domains, thereby achieving competitive domain adaptation
on multiple CV benchmarks [3]. We extend the use of OT for do-
main generalisation and characterise its performance for inertial
navigation. OT has theoretical connections to other flavours of dis-
tribution divergence metrics such as maximum mean discrepancy
(MMD) [11]. The latter we have found to be less effective for inertial
navigation.

7 CONCLUSION
In this paper we propose IMULet: a cloudlet architecture for iner-
tial tracking suitable for ultra-low power mobile tags. IMULet has
an on-device component and an edge cloud-side component. On-
device compression and cloud-side model adaptation mechanism
are discussed and shown to afford promising early performance. We
plan to scale our evaluation and further illuminate system nuances
and their interaction in order to provide a summary of expectations
on what can be achieved using IMULet for adaptive, yet practical
ML-based inertial navigation.
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