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Abstract 
 

Tomography allows the imaging of an inaccessible cross-section for a given object by 

means of non-intrusive measurements taken at the periphery. Due to its ill-posed inverse 

nature, tomography is a highly demanding processing task.  

Field Programmable Gate Arrays FPGAs are emerging not only as effective glue-logic 

solutions but also as attractive reconfigurable computing devices for hardware-dedicated 

embedded applications. However, despite their versatility, generic FPGAs tend to have 

limitations with respect to logic demanding implementations and routing. Coupled with 

powerful floating-point DSP in a co-processor fashion, an FPGA-DSP hybrid platform 

with USB interface is a suitable candidate for tomographic applications. 

The Xilinx Spartan-3 90nm technology FPGA interfaces with the on-board SX2 USB 

device and the ADSP-21262 SHARC floating-point DSP as a true master controller. A 

logical peer-to-peer communication occurs between the FPGA and a multi-functionality 

GUI running on the host PC. The concurrent aspect of the design allows for maximum 

parallelism. 

Throughout the 4-month project span, a software-hardware co-design was conducted 

resulting in the hybrid platform being made ready for a further relevant algorithmic 

exploitation.  
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Chapter 1 

                                                

 
 

Introduction 
 
 
 

1.1 PHILOSOPHY 
 
Ever since the concept of intelligent computing was introduced even before the advent 

of the transistor towards the middle of the twentieth century, people have always been 

able to come up with applications to defy what is realistic at the moment 

conceptualizing and defining a yet-to-come technology. It is commonly believed that 

technology steers evolution. This may or may not be true, but what is beyond doubt is 

that sometimes evolution demands that technology be made available. Back to our 

context, one of the driving forces in electronics industry is the industrial imaging 

problem commonly referred to as Tomography.  Tomography essentially allows to 

view the internal composition and structure of an object by means of invasive non-

intrusive measurements taken at the periphery of the object [1]. 

In its abstract mathematical sense, tomography was envisioned early in the nineteenth 

century [2] even long before von Neumann* conceptualized his Instruction Set 

Architecture (ISA) for modern microprocessors which was named after him later in 

tribute. Then it was not until 1917 that tomography has been officially declared a 

possibility when Radon† generalized the concept to include objects of arbitrary shape. 

In this context, if we let the revolutionary digital processing means to be our 

technology, and we let tomography to be our evolution. Have we not waited for the 

availability of technology to evolve? Or has evolution spawned technology as a 

natural consequence to demand. One might argue quite strongly in support to either 

side. However, what is inarguably evident is that at some point in time, the world’s 

collective reason or world spirit (according to Hegelian philosophy) is gradually 

escalating throughout history towards becoming more aware of its reason (the reason 

 
* Neumann, John von (1903–1957), Hungarian-born U.S. mathematician. He developed game theory 
and quantum mechanics, and was a pioneer in computer theory and design.* 
† Radon, Johann (1887-1956), Austrian mathematician. He demonstrated that any N-dimensional 
object can be “reconstructed” from an infinite number of (N-1)-dimensional “projections”. 
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within) manifested in our context as the world’s physical laws which govern the 

universe we live in. Becoming itself is the act of synthesizing being and coming. With 

being refers to the capacity to develop and coming refers to the realization and 

fulfilment of the potential [3]. 

 

1.2 TOMOGRAPHY & COMPUTATION 
 
In tomography, the reconstruction of an object whose parameters are being 

interrogated with a certain sensing modality involves solving an inverse problem [4]. 

Fundamentally, the inverse problem is the act of regaining the true characteristics of 

an object from a measured set of data obtained after the interrogation of those 

characteristics through the use of a particular modality (attenuation in x-ray, 

permittivity in capacitance) [5]. The inverse problem can be traced back to physics 

whereby experimental results are fitted to a theoretical ideal model [4]. Due to its ill-

posed nature, the complexity of the system of equations through which fitting is being 

performed is a function of the number of measurements and the desired precision. 

Thus intuitively as it may seem, the imaging of an inaccessible cross-section for a 

given composite of substances (typically found in process tomography) requires a 

considerable number of quantifying measurements for it to be of significance in the 

industrial environment (yielding acceptable resolution). The reason is that all 

tomographic modalities involve coupling and ill-conditioning [6]. Firstly, coupling 

refers to the fact that the contributions of many voxels on which a modality is being 

applied affect each single measurement. Therefore, for each frame a set of equations 

modelling the system’s behaviour need to be evaluated with probably dynamically 

changing characteristics both in time (time variance vs. time invariance) and in space 

(shift variance vs. shift invariance). Secondly, ill-conditioning stems from the fact that 

images are very susceptible to noise unless a priori information exist. Therefore, 

numerical computation lies at the essence of tomography as both coupling and ill-

conditioning are ever present in all tomographic modalities. As a result, an extra 

processing overhead is ultimately superimposed on top of a rather naïve 

“transcendental” reconstruction technique to accommodate for the above factors due 

to the cruelty of the physical world. 
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Often the coupling effect, or conversely the non-local effect of measurements is far 

more severe in lower frequency modalities. Meaning x-ray tomography measurements 

are very much local compared to other low-frequency modalities such as optical 

tomography. However, the high cost of nuclear modalities makes them unjustifiable in 

some cases of process tomography not to mention other contributing factors such as 

the difficulty and high cost of the associated maintenance. 

 

1.3 PROJECT ENVIRONMENT 
 
An ongoing project in the group of Sensors, Imaging and Signal Processing (SISP) at 

the school of Electrical and Electronic Engineering (EEE) is the design of a low-cost 

general architecture for digital tomography systems. The idea is to develop a 

hierarchical architecture of cascadable nodes responsible for the acquisition and 

processing of highly demanding tomographic data corresponding to measurement 

channels. Ultimately the system should be able to perform fully or partially onboard 

intensive computations, e.g. tomographic image reconstruction and then to pass the 

resulting stream of data to a computer for finalization, display, and storage. 

The system design is centred around a very simple yet so powerful concept; 

reconfigurability. Tomographic image reconstruction systems are characterized by 

being highly specialized. Targeting a specific imaging technique, systems developed 

so far have proven to be difficult to be migrated from in order to facilitate other 

tomography systems utilizing the same platform. Resulting in little hardware 

reusability once the design is fully implemented. 

Addressing this problem alongside the need to shorten development time, the system 

currently being designed aims at implementing a generalized architecture that can be 

tailored in terms of logic resources and expanded in terms of hierarchy as to suit a 

wider spectrum of tomographic modalities. Down at the bottom of the pyramid, nodes 

with intimate dependency on the underlying tomographic technique can be replaced 

altogether in worst case scenario without having a propagating effect up towards the 

top of the pyramid where all channels converge to a single node. This node performs 

the last processing tasks and/or packing before communicating the final bit stream to a 

host PC. 
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1.4 BRIEF OVERVIEW, AIMS & OBJECTIVES 
 
The aim of this project is to utilize a hybrid architecture consisting of a Field 

Programmable Gate Array (FPGA) and a Digital Signal Processor (DSP) as its 

primary digital processing elements to implement a Universal Serial Bus (USB) 

interface to a host PC. The accomplishment of the proposed task dictates a rather 

extensive deployment of different programming languages through their underlying 

environments. The meticulous nature of project is a byproduct of the number of tasks 

associated with its successfulness. A detailed study of the general theory of USB is 

crucial for choosing a suitable USB2.0 device that can be integrated in the board 

architecture in a seamless manner. This was carried out from the very beginning and 

before commencing the actual project. Then VHDL as a means for synthesizing a 

synchronous core on the FPGA was investigated thoroughly. The VHDL code is the 

essence of the overall system as it is the true remote master which controls and 

synchronizes operations driven and initiated by an end user on the host PC. The 

VHDL core is designed to meet logical requirements in a Finite State Machine (FSM) 

manner as well as complex timing specifications as handshake and glue logic. Key 

issues tackled in VHDL range from logic design to inter-process synchronization. 

Further, C# programming language is used to implement a software interface which 

comprises in addition to its Graphical User Interface (GUI) classes to handle tasks 

including acquisition, file processing, multithreading, waveform plotting, mutual 

exclusion, complex numbers representation, decimal to two’s complement conversion 

and vice versa, and FFT computation for assessing the spectral components of the 

signal being acquired. C# was adopted bearing in mind that manufacturers supply a 

free C++ Dynamic Link Library (DLL) which can be integrated into the C# code 

exploiting the interoperability feature of the .NET environment. Finally, an interface 

to a powerful onboard floating-point DSP equips the system with the capability to 

reload the DSP’s firmware from the FPGA without using its expensive dedicated PCI-

based JTAG debugger and emulator. This is achieved by deploying the bootstrap 

feature of the DSP through its parallel port. 
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The overall system is depicted below: 

 

Figure 1.1: Overall System in logical block diagram representation 

 
The roadmap to the successful completion of the project involves: 

 Phase 0: USB specifications review, components choice, and identifying 

various system design requirements. 

 Phase 1: extensive VHDL literature review, and migration from JAVA to C#. 

 Phase 2: interfacing the FPGA to the USB device by implementing all 

necessary procedures whether for enumeration, configuration, or bidirectional 

data transfer. 

 Phase 3: designing and implementing the PC-side GUI with all necessary 

functionalities as to control, format, display, and store the acquired data. 

 Phase 4: reviewing the DSP specific architecture, implementing 

communication between the FPGA and DSP, and demonstrating the overall 

working scheme. 

Phase zero was carried out during the design study module. Starting in April, the 

actual project realization began with phase one. 
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Chapter 2  
  

Design Motivation 
 
 
 

2.1 THE DIGITAL CONFIGURABLE CHOICE 
 
It was discussed earlier that tomography is a demanding processing task. Yet the 

question that needs addressing is to decide on how and where to discharge the 

required computational load. Following on the recent breakthroughs in the 

contemporary state-of-the-art technologies, an ideal approach would be to employ a 

top-of-a-line nano system towards fabricating a dedicated system-on-chip which 

encapsulates in its dense customized resources all necessary processing yielding 

optimal performance in terms of mass, power consumption, and speed. However, in 

reality, important factors such as time-to-market, design complexity, and cost tend to 

influence people’s adoption for a particular methodology.  

Starting at the top of the hierarchy in its broadest sense, signal processing can be 

performed either in the analogue domain or in the digital domain. Although all 

tomographic modalities have their signals originating in the analogue domain, 

restricting analogue operation to preconditioning and other preliminary tasks can 

result in both prior and posterior advantages. Firstly, utilizing digital circuitry is more 

cost effective; digital signals are more immune to noise fluctuation alleviating the 

need for strong Electro-Magnetic Compatibility (EMC) inwards radiational shielding 

compared against full custom analogue circuitry. Secondly, digital solutions are 

highly reconfigurable due to their reprogrammability; in addition, they offer an 

unmatched versatility due to their in-circuit functional selectivity support. 

Furthermore, stand-alone digital design can be easily integrated and expanded into 

other systems. 

 

Descending down the hierarchy, Application Specific Integrated Circuits (ASICs) are 

emerging as strong solution that is being adopted widely in industry. They are 

characterized by unmatched performance especially with respect to power 
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consumption and EMC performance. However, unless mass-produced, ASICs’ cost 

can be quite unsustainable due to their extremely high prototyping cost.  

 

2.2 THE HYBRID ARCHITECTURE 
 
Reaching the purely digital layer in hardware design hierarchy, Digital Signal 

Processors (DSPs) are fully customized chips that are designed to perform DSP-

related operations in the fastest and most efficient manner and most notably 

concurrently whenever possible. From barrel shifters to bit-reverse addressing modes, 

DSPs have all possible resources to implement a wide variety of processing 

operations. Nevertheless, since the architecture is preconfigured, the designer can not 

do much apart from customizing his / her firmware. In other words, DSPs have 

inherent limitations due to their instruction set architecture (ISA) giving rise to 

memory and instruction bottlenecks [7]. DSPs deliver their optimal speed 

performance when their pipelines are fully utilized resulting in the highest possible 

instruction throughput. Thus in fast streaming systems, such as the processing of 

tomographic data, responding to outside events compromises the effective processing 

instructions being executed and in turn limits the complexity for which the system can 

accommodate. Furthermore, DSPs suffer from relatively high power dissipation rates 

and often require extensive glue logic to interface with the rest of the system [8]. In 

general, DSPs have less versatility with respect to their peripheral capabilities when 

compared to regular microcontrollers. This is quite logical because DSPs targets data 

processing rather than controlling events. In ISA architecture the device utilizes the 

instruction path to execute one task at a time which results in tasks being scheduled 

for execution in a sequential fashion. Recently a new class of embedded solutions has 

emerged in an attempt to accommodate for broader applications. Named Digital 

Signal Controller (DSC), manufacturers (such as Microchip®) aims at offering low 

performance DSPs (typically 30 MIPS) with enhanced peripherals support such as 

Pulse Width Modulation (PWM) core for motor control applications [9].  

On the other hand, FPGAs are much efficient in terms of power dissipation and are 

highly generic and reconfigurable in their architecture as they can be tailored to suit a 

particular application independently of the underlying silicon platform as opposed to 

ASICs [10]. Being able to support the industry’s highest speed serial bit stream LVDS 
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[11], typically > 500 MHz, FPGAs are amongst few comprehensive configurable 

solutions available for developers to do so. In fact, FPGAs have been long adopted as 

the prominent solution for implementing glue logic, but have been just recently 

looked at as an effective DSP solution due to their ever increasing speed and logic 

density [7]. However, the caveat is that complex designs can be very demanding in 

terms of available resources. Moreover, designs could easily grow unmanageable up 

to the point when third-party Intellectual Property IP cores become inevitably 

necessary introducing additional cost. Otherwise, designers can find themselves 

reinventing the wheel in every single project, and possibly in every single task within 

a project. Whereas when buying an established DSP from a certain manufacturer, one 

will be charged neither for the effort nor for the research put into designing and 

implementing the product simply because of the mass-production aspect associated 

with it. 

Real-life experience has shown that a hybrid scheme utilizing both solutions in a 

complementary fashion is highly desirable to strike a balance between the merits and 

disadvantages of both technologies. The result is rapid hardware reconfigurability for 

a wide range of applications [12-16] 

 

2.3 USB SUPPORT 
 
USB is emerging as the industry’s unified standard since its introduction in 1998. 

Increasing number of peripherals across different platforms is adopting USB to 

support a host-device connectivity. This has led to a quick embrace of USB by many 

manufactures [17] in the quest to satisfy the huge demand due to its powerful features 

which include: auto detection and configuration, easy expansion using hubs, 

reliability, and low cost. Recently USB standard was enhanced to include ‘On-The-

Go’ (OTG) functionality [18] enabling point-to-point data exchange between remote 

products which added even more popularity. Now the wireless USB standard is being 

finalized [19] with predictions that it will soon replace Bluetooth. USB2.0 High-speed 

delivers a theoretical bitrate of 480 Megabits/second which makes it a suitable 

candidate for the project’s PC interfacing aspect as it is roughly estimated that the 

aggregate data stream generated by the overall system hierarchy would be around 25 
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Mega-Byte per second. In addition, its endpoint-based modular protocol facilitates a 

straightforward communication scheme defined on top of USB. 
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Chapter 3  
 

Detailed Software Design 
 
 
 

3.1 INTRODUCTION 
 
In this chapter, a detailed treatment of the system’s software architecture is presented. 

Rather than addressing all the theory of the software design which is beyond the scope 

of this report, the following discussion will attempt to explain important system-

specific issues associated with the software. These issues are grouped according to 

their logical nature as follows: mathematical & numerical representations, USB-

related considerations, plotting and visualization, all the way up to Operating System 

(OS) concepts. Selections of C# code will be listed whenever necessary to facilitate 

the discussion. However, for full code listing please refer to appendix C at the end of 

the report. 

 

3.2 MATHEMATICAL & NUMERICAL REPRESENTATIONS 
 
 
3.2.1 HexConversion class: 
 
Starting in a strictly mathematical fashion, it was imperative that the system be able to 

translate the numeric format supplied by both the FPGA and the DSP. Whether 

integer or fractional, the FPGA and the DSP use a signed two’s complement notation. 

In response, a class named HexConversion was developed to handle the task of 

converting data from hexadecimal to double and vice versa. The double type is the 

one used by the Math class in C# so it is logical to convert everything into double as it 

is most likely that the acquired samples will be subjected to further mathematical 

processing whether for visualization or for packing in matrices. The following 

paragraph will explain the fixed-point signed fractional and signed integer numeric 

notations before proceeding with the actual class implementation. 
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Consider a 32-bit fixed-point format. This format can denote a signed integer or 

signed fractional number as shown in figures 3.1 and 3.2.  

 

 

Figure 3.1: 32-bit fixed-point signed integer [20] 

 

 

Figure 3.2: 32-bit fixed-point signed fractional [20] 

 

These representations can be generalized to any number of bits n. 

As illustrated in the figures, a signed integer format of n-bits can accommodate for a 

span of values  inclusive. One the other hand, a signed fractional 

number of n-bits can represents faithfully numbers ranging from -1 to almost +1. 

]12,2[ 11 −+− −− nn

As widely perceived, in high level programming languages such as C#, it is not 

possible to perform low-level logical operations such as shift and concatenate. This is 

partially true as it is possible to perform shifting on the byte type in C#. However, the 

result is automatically parsed into an int type which renders it unusable for further 

binary-level operations. In order to go around this problem, the string type is used as 

an intermediate type to which all numeric conversions will be parsed. This makes the 

conversion an easy and straightforward matter as all types in C# have a default 

method ToString() associated with them that facilitates this operation with zero 

overhead. 
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The HexConversion class consists of six static methods. Static methods are used to 

guarantee that no objects of the class are allowed to be instantiated. This ensures that 

modifications introduced to an object will affect the original object and not another 

replica in the memory. The six static methods are: 

 hexDigits : returns a hex character in correspondence to a hex nybble 

passed in an integer argument.  

 ToHexString : returns the hex string equivalent of an array of bytes. This 

method makes use of hexDigits and C# built-in binary manipulation 

operators; >> and &.  

 decimal2hex : converts a decimal fixed-point fractional number val to its 

hex representation over n-bits by implementing the following equation: 

( ) ( )12&22 1 −×+ − nnn valFloor . If val is positive, the first left hand side of 

the equation will overflow yielding zero in the sign bit. “Anding” the result 

with ones discards bits beyond the nth digit. If val is negative, a weighted full 

resolution range will be subtracted from  (effectively two’s complementing 

val) yielding a one in the sign bit to indicate a negative number. Flooring the 

first stage of the equation gets rid of unwanted fractions in case the resultant 

value is not a whole number.  

n2

 int2hex : converts a signed integer to its signed hex representation over n-

bits. 

 lookupHex : returns the equivalent integer value of a passed hex character 

wrapped in double format in order to minimize further explicit parsing. 

 hex2integer : returns an integer equivalent of the passed two’s complement 

hexadecimal number. It is easier to comment on the actual code for this 

function rather than explaining it in words. 

Listing 3.1  

public static int hex2integer (string input, int n) 
{ 

int i, val; 
double j=0; 
for (i=0; i<input.Length; i++) 

j += (double)Math.Pow(16, input.Length-1-i)*lookupHex(input[i]); 
  

if ( j >= Math.Pow(2,n-1) ) 
val = -(int)(Math.Pow(2,n) - j); 
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else 
val = (int)j; 

  
return val; 

} 

The “for” loop simply decodes the hex number packed in the string input to its 

numerical equivalent. Then if the result is found to be greater than the 

maximum positive representable number, the result is complemented with 

respect to n-bits and negated. 

 hex2decimal : returns the fractional decimal representation of the passed hex 

parameter. It is implemented exactly in the same way as hex2integer except 

that the resultant value needs to be normalized first as follows: 

Listing 3.2  

if ( j >= Math.Pow(2,n-1) ) 
val = -(Math.Pow(2,n) - j)/Math.Pow(2,n-1); 

else 
val = j/Math.Pow(2,n-1); 

   
return val; 

 

A typical utilization of this class within the programme is presented bellow: 

Listing 3.3  

double[] dbuffer = new double[buffer.Length/2]; 
for (int j=0; j < buffer.Length; j+=2) 
{ 

// Reference Operation : 
//dbuffer[j/2] = buffer[j] + buffer[j+1]*Math.Pow(2,8); 
byte[] intermediate = new byte[2]; 
intermediate[0] = buffer[j+1]; 
intermediate[1] = buffer[j]; 

  
dbuffer[j/2] = HexConversion.hex2integer( 

HexConversion.ToHexString(intermediate), 
16 
); 

} 

The code shows how a signed two’s complement sample present over two consecutive 

bytes can be converted to its integer number representation and stored in a double 

buffer location for further visualization at a later stage. 

 

3.2.2 Complex structure: 
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One of the functionalities that the software offers is a real-time FFT computation for 

the incoming stream of samples. In order to perform FFT, first a complex structure 

was defined to realize complex numbers representation. It is worth pointing out that 

Complex is defined as a structure rather than class in order to avoid the overhead 

associated with calling a constructor for every single class allocation in an N point 

complex array when computing FFT recursively which might result in a slight 

degradation in the overall software performance. The implementation of the complex 

structure is straightforward. It consists of three public methods; Complex, conjugate, 

ToString. The latter overrides the default .NET ToString method. In addition, the 

structure overloads basic arithmetic operators such as +, -, and * for scalars and 

complex numbers. 

 

3.2.3 FFT class: 
 
A real-time FFT computation is performed on the host PC. It provides a means to 

assess the frequency content of the incoming signal. It runs on a different thread than 

the mainstream thread in a multithreaded application. The multithreaded nature of the 

software will be discussed in details later alongside some other OS concepts deployed 

in the software’s architecture.  

The class FFT_Trans, consists of three static methods fft, ifft, and convolve.  

Firstly, the fft method computes the FFT of the complex array X[], assuming its 

length is a power of 2 based on a recursive implementation of the radix 2 Cooley-

Tukey FFT algorithm [21]. The recursive approach of the Cooley-Tukey FFT is very 

simple to code indeed as one neither has to keep track of the separation of constituent 

points of the butterfly in a given stage  nor the separation of points having the same 

weighting factor within a given stage . However, the caveat is that an FFT recursive 

algorithm is more demanding in terms of memory resources. For example, a 1024 

point FFT will require 10 recursions, one per butterfly stage, to yield the final result. 

(Had this been the case fifteen years earlier, one would have worried about this being 

inefficient way to implement FFT. Nevertheless, modern computers as so powerful 

that we no longer care much about efficiency and even tend to trade it for simplicity.) 

What is crucial is that while regression is in progress, a termination case has to ensure 

that the final recursive call converges to a value upon which all remaining calls 

wb

fb
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depend for them to evaluate and present a valid value to the parent call. In this case, 

the base condition is when the number of points is equal to one which corresponds to 

y being equal to x. Generally, the even and odd components of the DFT will be 

extracted whereby an FFT transform for each is called so that at a later stage they will 

be used with the proper weighting factor to reconstruct the final result. 

Secondly, the ifft computes the inverse FFT of the complex vector X[]. Implicitly 

it calls the fft method. The only additional caution is that the complex array is 

conjugated both before and after the direct FFT call to account for the positive sign in 

the IDFT formula. Also the returned array Y[] is divided by the total number of 

points.  

Finally, method convolve computes the convolution of two complex time-domain 

vectors x and y based on Fast Linear Convolution [22]. The two vectors are taken to 

the frequency domain where they are multiplied and the result is inverse-transformed 

to the time domain again. 

 

3.3 USB-RELATED IMPLEMENTATIONS 
 
In this category, various classes and aspects associated with USB are presented. The 

following discussion comprises two classes namely RandomAccessBurst and 

Acquisition in addition to low-level USB driver functions. 

3.3.1 RandomAccessBurst class: 
 
To start with, a class named RandomAccessBurst was implemented which maintains 

operations related to a USB-packet. In the Object Oriented Programming (OOP) 

philosophy, programmers are encouraged to wrap objects of the same level of 

abstraction or category into a separate class. Hence RandomAccessBurst class 

encapsulates all packet-related entities in one object that is easily and securely 

maintained through its properties and methods. In addition to some private data 

members, the class has two public data members as far as the functionality of the class 

is addressed, burst which is a double array of fixed size (here 512) to hold a packet, 

and index_of_burst which is an int type to keep track of the received packet’s 

index. Moreover, the class utilizes a property BurstIndex to set and get the private 
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index_of_burst variable, and two public methods SetBurst and GetBurst to set 

and get the private burst array. 

 

3.3.2 Acquisition class: 
 
This class builds on top of the RandomAccessBurst class to provide file-processing 

services necessary for storing and retrieving RandomAccessBurst objects to/from 

files by means of internal private binary reader and writer data members. Public 

methods include: OpenFile which create/open file containing empty records, 

GetBurst which retrieve a RandomAccessBurst depending on its index, and 

AddBurst which add a burst to file at position determined by a parameter signifying 

burst number.  

Typical working scenario that illustrates the usage of the above two classes is 

presented in listing 3.4: 

Listing 3.4  

acquisitionProxy = new Acquisition(); 
acquisitionProxy.OpenFile( fileName ); 
. 
. 
. 
int newBurstIndex = Var.USB_Packet.BurstIndex + 1; 
RandomAccessBurst bPacket = new RandomAccessBurst(newBurstIndex, dbuffer); 
acquisitionProxy.AddBurst(bPacket, newBurstIndex); 
 
 
3.3.3 Low-level USB functions: 
 
The .NET framework does not provide implementations to support low-level I/O 

operations. Moreover, literature on this subject is extremely hard to find as Windows 

Operating System in its essence is not an open source OS as opposed to other 

operating systems such as Linux and UNIX. As a result, it is almost always the case 

that one can never find an open source implementations in support to Windows OS. 

This makes the development of windows applications with intimate relation to the 

hardware layer on which the OS operates be restricted and monopolized by big 

corporations rather than individuals. 

Initially the plan with regards to the USB windows driver was to marshal the 

unmanaged C++ static library, which is freely available from Cypress, into the 

managed world to allow .NET applications to use the C++ DLL. Relying on my 
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computer engineering background, the risk of digging deep in such specific 

programming task seemed to be feasible at the time. After investing a great deal of 

time in an attempt to produce a wrapper code for marshalling the unmanaged DLL, it 

turned out that the task requires more than just a computer engineer. In fact a solid 

software engineering background coupled with dedication and time is inarguably 

needed especially that the task dictates a specialized expertise in .NET framework 

rather than general programming skills. 

Choosing not to compromise other tasks in the project which are more relevant to the 

project’s environment, a third party software was used to generate the Windows USB 

driver plus the low-level DLL file to interface with the USB device. After some 

experimentation, the DLL was easily incorporated in the software resulting in a 

dynamically adjustable USB driver which was crucial for investigating various USB 

transfer types as to suit the nature of application. 

 

3.4 VISUALIZATION 
 
The signal being acquired through USB is required to be plotted both in time domain 

and frequency domain after the application of FFT. To achieve this task, two classes 

were implemented; SoftScope and SpectrumAnalyzer. They provide the user with 

the ability to perform various tasks such as controlling the x-y axes scale, 

normalization factor, offset etc emulating the real operations of an oscilloscope or 

spectrum analyzer. Further to these operations, SpectrumAnalyzer also allow for 

choosing the display and operation settings including linear and dB scale, windowing 

type, and number of frequency bins. Both classes run in parallel to the parent 

application on separate threads allowing it to be free of the burden associated with 

constant monitoring and control. The real-time refreshing procedure is maintained via 

special mechanism that will be discussed later in the multithreading section of the OS 

concepts. 

As for plotting waveforms, a freely available plotting library for .NET by Matt 

Howlett and Paolo Pierini is deployed [23]. The library handles all plotting-related 

operations from scaling to background colour. This is in line with the whole purpose 

behind OOP programming which is to provide classes to facilitate code reusability 

enabling programmers to be more productive concentrating on system-level 
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integration and development rather than starting from scratch in every single project. 

One additional consideration while choosing a suitable plotting library is the ability to 

support density pixel plots commonly needed in tomographic distribution images. The 

next figure depicts such a plot. 

 

Figure 3.3: Density distribution plot 

 

3.5 OPERATING SYSTEM CONCEPTS 
 
At this point, in order to proceed with presenting the remaining features of the 

software design, an extremely important concept needs to be imported first from the 

Operating Systems world. Multithreading is one powerful feature around which many 

of the aspects of real-time systems revolve. Yet at the same time, multithreading is 

Pandora’s Box, which once opened, a huge number of inconveniences can stem from 

thus gradually degrading the system and even eventually rendering it totally 

erroneous. 

The following discussion will explain in great details this concept as it will be 

revisited again in the Detailed Hardware Design chapter. Although the discussion will 

be conducted in a software-orientated manner, the same concepts remain totally valid 

in an embedded hardware environment such as an FPGA or a DSP. 

 

3.5.1 Theoretical background - Multithreading: 
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A thread is essentially a portion of a programme that can execute. Multithreading 

refers to the ability of an OS to support multiple threads of execution within a single 

process [24]. A process is a collection of one or more threads that can run 

simultaneously. Of course single processor PCs have only one processor which is 

capable of executing only one task at a time. However, the OS schedules and 

dispatches among processes and threads resulting in a concurrent effect when 

observed over a small interval of time in which the switching occurs. Historically the 

privilege of using multithreading was granted to the OS only. Now .NET framework 

grants this flexibility to users using any .NET language. Multithreading gives the 

programmer a greater control over the timing of application-related events. When the 

nature of the program does not require serializing tasks, multithreading becomes 

extremely useful. The following figure illustrates various scenarios for multithreading. 

 

 

Figure 3.4: Threads & Processes [24] 

 
The major benefit of multithreading is that a programmer can make use of a 

concurrent execution scheme without performance degradation because the use of 

threads does not require an explicit intervention from the OS’s kernel in order to 

perform dispatching and monitoring unlike processes. 
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It was established that concurrency is a powerful concept that can improve the 

software architecture of a program leading to faster execution time and better 

processor utilization. However, the risks associated with concurrency are enormous. 

In order not to drift too far in explaining all sorts of difficulties arising from 

concurrency, the discussion will be restricted to the problem relevant to the project’s 

nature. The main problem that needs attention is the scenario when two threads try to 

access a shared variable. This problem is referred to as the mutual exclusion problem. 

The solution has to ensure that only one process (or thread) is allowed to access the 

shared memory location at a time such that data integrity is maintained. 

The proposed software architecture consists of a parent process which is the 

DefaultInterface class. Utilizing a user-friendly menu, an end-user creates a new 

session from the options menu. The session in turn creates/opens a file to which 

subsequent packet reception will be registered as RandomAccessBurst objects. Then a 

session configuration form enables the user to configure a read/write 

continuous/single operation to/from a chosen pipe. The operation will commence 

immediately. The user may choose to view the incoming signal by pressing the 

oscilloscope button. The oscilloscope thread operates transparently and independently 

of the parent process and may spawn the spectrum analyzer thread upon user’s 

request. 

 
3.5.2 Mutual exclusion solution adopted: 
 
When the software is fully operational, one parent process DefaultInterface runs in 

parallel alongside two major child threads; SoftScope and SpectrumAnalyzer. As 

stated above, this parallelism must not result in multiple accesses to a shared memory 

resource. In order to accomplish mutual exclusion, all global variables are 

encapsulated within a class called GlobalVariables. Within GlobalVariables, 

private data members are protected by means of the Monitor class. Monitor class is 

part of C# Threading namespace which provides thread synchronization. Listing 3.5 

describes how class Monitor can be used to protect shared variables. 

 
Listing 3.5  

public RandomAccessBurst USB_Packet 
{ 

get 
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{  
// obtain lock on this object 
Monitor.Enter( this ); 

 
// tell waiting thread (if there is one) to  
// become ready to execute (Started state) 
Monitor.Pulse( this ); 

 
RandomAccessBurst RABCopy = this.usbPacket; 

 
// release lock on this object 
Monitor.Exit( this ); 

 
return RABCopy; 

 
} // end get 

 
set 
{ 

// acquire lock for this object 
Monitor.Enter( this ); 

 
// set new value 
this.usbPacket = value; 

 
// tell waiting thread (if there is one) to  
// become ready to execute (Started state) 
Monitor.Pulse( this ); 

 
// release lock on this object 
Monitor.Exit( this ); 

 
} // end set 

} 

Method Enter is used to obtain lock on an object. Before releasing lock on the object 

using method Exit, method Pulse tells the thread that has been blocked (if any due to 

its attempt to access this object) to become ready to resume executing as this object is 

about to be released [25]. Attention needs to be drawn to an important consideration 

in the “get” property due to one special case. While a thread in the “get” property and 

about to release lock on object, another thread could be assigned the processor 

immediately after the monitor is released and before the return executes. In this case 

the first thread would receive the new value modified by the second thread. Therefore, 

copying the critical object first ensures that the first thread receives the original value 

and not the one which has just been updated by the second thread. 

All critical variables within class GlobalVariables use this simple yet powerful 

class. .NET framework provides other alternatives for ensuring mutual exclusion such 

as class Mutex. In general, unless the complexity of the design dictates the 
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deployment of the more sophisticated approaches in remedy to a certain situation, it is 

always advisable to keep the design as simple as possible.  

One more issue needs to be mentioned at last for the sake of completeness. When 

instantiating the new thread, its constructor receives the GlobalVariables object as a 

parameter which will be stored to a similar local instance originally set to reference a 

null. In OOP languages such as C# and JAVA, no explicit use of pointers is 

performed by programmers. However, one must bear in mind that setting an 

uninstantiated instance of an object to a previously instantiated one (using the 

keyword new) is equivalent to copying a pointer (reference) to an object into the un-

instantiated copy. Therefore, effectively the new thread’s constructor stores a 

reference to the original object in a suitable local uninitialized object of the same type 

without allocating new memory space for it. 

 
3.5.3 Plot refreshing mechanism: 
 
In the following paragraph, the problem of refreshing a windows form will be 

addressed. The oscilloThread thread will be utilized as the object of discussion. 

However, the same result applies to the spectrThread in exactly the same manner. 

Windows forms suffer from a legacy inherent limitation requiring that methods called 

from outside the control’s creation thread be marshalled to (executed on) the control’s 

creation thread [26]. The nature of refreshing a plot within a windows form suggests 

that refreshing be scheduled on a regular basis to deliver a steady rate. This can be 

handled by a background thread that allows the interface to remain responsive while 

refreshing is being performed in the background without having to poll on the event. 

Still due to the above mentioned limitation, the outside call needs to be marshalled on 

the oscilloThread thread. 

To accomplish this refreshing mechanism, first the method scopeRefresh was 

defined. This method is called from the background thread. It is called through a 

BeginInvoke call so that it is always “marshalled” to the thread that owns the 

plotSurface control. In turn BeginInvoke requires a delegate as an argument. In 

.NET framework, a delegate is equivalent to a function pointer. The following piece 

of code shows various entities defined within SoftScope class. 
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Listing 3.6  

// Background Thread 
private delegate void ScopeRefreshDelegate(); 
 
private Thread refreshThread; 
. 
. 
private ScopeRefreshDelegate scopeRefreshDelegate; 
. 
. 
scopeRefreshDelegate = new ScopeRefreshDelegate(scopeRefresh); 
 
 
Upon selecting the “Start Refreshing” option in the View menu list, the following 

code will be executed: 

Listing 3.7  

refreshThread = new Thread(new ThreadStart(ThreadProcedure)); 
refreshing = true; 
refreshThread.Start(); 

Now the refreshThread is instantiated and started. Listing 3.8 shows the actual 

thread procedure. This method runs in a background thread to refresh the 

plotSurface. 

Listing 3.8  

private void ThreadProcedure() 
{ 

while (true) 
{ 

try 
{ 

// Perform a BeginInvoke call to the list box 
// in order to marshal to the correct thread. 
// Begin the cross-thread call. 
IAsyncResult r = BeginInvoke(scopeRefreshDelegate); 

} 
finally 
{ 

// You are done with the refresh 
 

// Raise an event that notifies the user that 
// the refresh has terminated.   
// You do not have to do this through a  
// marshaled call, but 
// marshaling is recommended for the  
// following reason: 
// Users of this control do not know that it is 
// multithreaded, so they expect its events to  
// come back on the same thread as the control. 
BeginInvoke(onRefreshComplete, new object[] {this, 
EventArgs.Empty}); 

} 
Thread.Sleep(100); 

} 
} 
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The comments in listing 3.8 describe the overall operation of the thread. One last note 

needs to be pointed out with regards to the refresh rate. The refresh rate of the plot is 

determined by the number of milliseconds passed as argument in the method Sleep. 

In this case, 100 ms results in 10 Hz refreshing rate. Sleep method instructs the thread 

to give up its time slice and stop execution for a certain number of milliseconds. 

 

In conclusion, the source tree of the host application is shown in figure 3.5. 

 

 

Figure 3.5: Host software source tree 
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Chapter 4  
 

Detailed Digital Hardware Design 
 
 
 

4.1 INTRODUCTION 
 
In this chapter, important digital hardware design considerations will be tackled. 

Rather than explaining the code, an emphasis on the functional behaviour of various 

design entities, whether procedures or modules, will be placed. The reader is to be 

directed to the VHDL appendix for the commented detailed code. 

 

4.2 HARDWARE CONCURRENCY 
 
 
4.2.1 Identifying the problem 
 
Following on the multithreading discussion presented in chapter 3, hardware threads 

or processes should also ensure mutual exclusion. In VHDL, a behavioural 

architecture contains one or more processes running in parallel. However, no multi-

source signals are allowed. A multi-source signal is one that can be written to 

(modified) in two or more distinct processes. This synthesis constraint guarantees 

internal signals integrity. One the other hand, depending on the nature of the system, 

restricting modify-accesses to one hardware process may result in a sequential 

execution scheme. Therefore, arises the question whether concurrency should be lost 

in the favour of meeting synthesis constraints, as in such a case, the adoption of 

FPGAs would become questionable, with the end result resembling that of an ISA 

computing solution. 

In order to meet synthesis constraints and still have as many parallel processes as 

possible accessing a shared resource, the following scheme depicted in figure 4.1 is 

applied. The shared resource receives only one modifying signal. A multiplexing 

process selects which of many connected signals to route to the shared resource in 

accordance to a selecting input signal. The inferred multiplexer process is an 
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asynchronous one with a sensitivity list consisting of all input signals including the 

select signal. Again the select signal can not be modified but in one process. This 

process is an arbiter process that listens to a combination of requests from all relevant 

processes to supply the select signal accordingly. The arbiter process has to account 

for all possible scenarios including the prohibited ones in order not to result in any 

unexpected behaviour. 

 

 

Figure 4.1: Abstract solution for hardware mutual exclusion 

 
Another issue to be kept under consideration is that in VHDL, a shared resource can 

be as tiny as a mere signal, or as large as a fully functional module such as an external 

bus driver whose use is restricted to one process at a time. 

 
4.2.2 Proposed solution 
 
For assessing the PC USB connectivity, Xilinx’s core generator was used to produce a 

digitally-synthesized sine waveform which is sampled at relatively high frequency. 

The sampling clock is the system’s clock divided by eight MHzMHz 125.3825 =  

leaving a good temporal margin (8 clock cycles) in which to manipulate the sample. 

Each sample is represented over 16-bit two’s complement integer notation. Thus in 
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order to maintain a continuous stream of uninterruptible packets, sample packing and 

transmission have to occur simultaneously. This is achieved by implementing a 

double buffering scheme in which simultaneous read and write operate seamlessly.  

The Spartan-3 component library has a built-in dual-port RAM that enables 

reads/writes operations from/to the same block RAM. Furthermore, one can choose 

among various configurations for partitioning the total available bits. Thus in 

principle while filling the upper half of the buffer, the lower half can be read out as to 

accomplish a smooth read/write working scheme. Nevertheless, the use of two distinct 

RAM blocks was necessary simply because each block can accommodate for up to 1K 

18-bit words and the software design requires that a constant 512 samples be sent at a 

time. 

In VHDL code, two processes were implemented that operate interchangeably in a 

loop to supply the SX2’s FIFO with packets at a constant rate. This constant rate 

along with the endpoint bandwidth will be assessed later in chapter 5. Process 

sine_packing fills one of the RAM buffers with samples whenever instructed to by 

the process which will consume this buffer. In turn, sine_packing uses services from 

new_sample_rdy process which operates at the sampling clock to flag the readiness 

of new sample. This was necessary as in VHDL a process is only allowed one clock to 

operate on which conforms to what is expected from a transparent hardware 

modelling language. The transmitting process, in this case the mainstream process, 

detects the availability of a full buffer by means of synchronization flags and 

commences the transfer immediately. The inter-process synchronization mechanism 

will be discussed in the next section.  

Figure 4.2 is the metaphoric hardware representation of the double buffering scheme. 

Two 1:2 demultiplexers alongside a 2:1 multiplexer are used for the read enable, write 

enable, and read data respectively. This hides which buffer is being currently accessed 

from the producing and consuming processes. Because write is always performed by 

sine_packing process and read is always carried out by the mainstream process no 

further multiplexing is needed although it is possible. Moreover, no arbiter process is 

implemented as the selecting signal is always modified by the mainstream process 

which decides when to start/stop sine_packing process by means of synchronization 

flags. 
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Figure 4.2: Double buffering scheme 

 
Table 4.1 shows the truth table of the logic operations set by the select signal. 

Table 4.1: Select signal truth table 

buffSel<1:0> 

wrSel rdSel 
OPERATION 

0 0 Prohibited 

0 1 
Write buffer 1 

Read buffer 2 

1 0 
Read buffer 1 

Write buffer 2 

1 1 Prohibited 
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It is worth pointing out that the multiplexing process is inferred rather than 

instantiated, i.e. the logical operation is achieved in an implicit manner using a case 

statement which account for both the multiplexing and demultiplexing actions.  

Listing 4.1 shows the VHDL implementation of the above schematic. 

Listing 4.1  

myDemux : process (write_enable, read_enable, rwSel, read_data1, read_data2) 
begin 
 case rwSel is 
  when "00" => -- NOT ALLOWED, however in case 
   write_enable1 <= '0'; 
   write_enable2 <= '0'; 
   read_enable1 <= '0'; 
   read_enable2 <= '0'; 
 
   read_data <= (others => '0'); 
  when "01" => 
   write_enable1 <= write_enable; 
   write_enable2 <= '0'; 
   read_enable1 <= '0'; 
   read_enable2 <= read_enable; 
 
   read_data <= read_data2; 
  when "10" => 
   write_enable1 <= '0'; 
   write_enable2 <= write_enable; 
   read_enable1 <= read_enable; 
   read_enable2 <= '0'; 
 
   read_data <= read_data1; 
  when "11" => -- NOT ALLOWED, however in case 
   write_enable1 <= '0'; 
   write_enable2 <= '0'; 
   read_enable1 <= '0'; 
   read_enable2 <= '0'; 
 
   read_data <= (others => '0'); 
  when others => NULL; 
 end case; 
end process; 
 

4.3 INTER-PROCESS SYNCHRONIZATION 
 
Inter-process synchronization refers to the mechanism by which a timely order is 

maintained among a group of processes. The presentation of this section was 

intentionally delayed after the introduction of hardware concurrency section so that 

the above discussion justifies the need for such arrangement.  
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Inter-process synchronization is realized via declaring a custom record type 

InterprocessSync. In turn, InterprocessSync deploys another custom record type 

status_flag. Listing 4.2 shows the declaration of both types. 

Listing 4.2  

type status_flag is (INPROGRESS, FINISHED); 
 
-- This record type maintain synchronization between parent & child 
-- processes 

 type InterprocessSync is  -- InterprocessSynchronization 
-- Record type 

 record 
  syncFlg : std_logic; -- Synchronization Flag  

-- Modify Authority: parent  
-- process 

  status : status_flag; -- Status Flag, Modify Authority:  
-- child process 

 end record; 
 
The first type syncFlg can be thought of as the asynchronous resent of the child 

process. It is solely modified by the parent process. The second type is meant to be 

modified by the child process upon the completion of the required operation. The 

parent process can poll on this flag occasionally or constantly to test whether a certain 

task has finished. For a successful synthesis of state machines, the Xilinx XST 

synthesis tools demand that state machines be written in a manner that conforms to 

the predefined VHDL language templates; otherwise, the code becomes 

unsynthesizable despite its logical synthetical correctness. For this reason, status flags 

have to be polled on rather than included in the sensitivity list of a process. 

Listing 4.3 shows a typical scenario for using this synchronization mechanism. 

Listing 4.3  

when PACK_IN_BUFFER => 
 
  case indexer is 
   when 0 => 
    if (buffAddress = "1000000000") then 
     indexer := 4; 
    else -- a packet has been stored 
     smplRdy.syncFlg <= '1'; 
     increment(indexer); 
    end if; 
 
   when 1 => 
    if (smplRdy.status = FINISHED) then 
     smplRdy.syncFlg <= '0'; 
     increment(indexer); 
    end if; 
. 
. 
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. 
new_sample_rdy : process (smplRdy.syncFlg, clk_sampling) 
begin 
 
 if (smplRdy.syncFlg = '0') then 
  smplRdy.status <= INPROGRESS; 
 elsif (clk_sampling = '1' and clk_sampling'EVENT) then 
  smplRdy.status <= FINISHED; 
 end if; 
 
end process; 
 

Process new_sample_rdy simply detects an active sampling clock edge. In more 

complex processes, a state for halting the sequential execution has to be inserted. This 

is important in order to ensure that while the parent process has not yet acknowledged 

the FINISHED flag by deasserting its sync flag, the child process is kept trapped in an 

idle state. 

 

Figure 4.3 presents a graphical illustration of the inter-process synchronization 

scheme explained above applied on the dsp_packing process. 

 

Figure 4.3: Inter-process synchronization illustration chart 
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4.4 VHDL CODE MODULAR ARCHITECTURE 
 
In order to converge to the final solution in a systematic manner, it was necessary to 

adopt a top-down modular approach that allows for formality, segregation, generality, 

and incrementality [27]. Moreover, the system should exhibit high cohesion and low 

coupling as set by the general guidelines for embedded systems. 

As a result, the digital design architecture consists of the following modules: 

 Main Module: At the very top of the design hierarchy, it is in this module that 

all other modules are instantiated and linked (though processes) to deliver the 

system’s final desired functionality. 

 bus_driver Module: Although this module does not include much logic 

operations, it is supplemented by a set of functions defined in package 

SX2_Utilities as to implement SX2 USB device timing diagrams. In 

essence, it communicates external signals to/from internal peers after a 

possible application of an intermediate conditioning logic. The partitioning of 

the bus into external and internal falls under the general design practices that 

facilitate the functional modularity of the system. The internal bus always has 

an active high polarity whereas the external one can be dynamically tuned 

with respect to the input active_s signal signifying the desired active state. A 

simple xnor gate implements this truth table. Also this module controls the 

state of the I/O buffer according to the current operation being performed. 

Originally, during the work on this project, this module generated the 

synchronous state machine for read/write operations utilizing internal signals 

that instruct the module when to do so. Later, it turned out that the device 

starts up in the asynchronous mode and thus implementing asynchronous 

accesses was necessary for the initial configuration of the chip. Then realizing 

that configuration is only done once and that a 16-bit FIFO access alleviates 

the need for a synchronous time-efficient one, the synchronous interface was 

substituted with the asynchronous one altogether. Furthermore, the 

asynchronous interface has the advantage of being more EMC friendly due to 

the absence of the interface clock which is always desirable. 
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 RAM_Buffer Module: Equips a block of dual-port RAM with necessary logic 

to implement an architecture which is capable of operating in either FIFO 

mode or addressable RAM mode. 

 clkdivider Module: is  a modification of the Xilinx’s Digital Clock Manager 

(DCM) library component that provides the system’s synchronizing clock, 

other divided versions,  and a doubled version. The divided versions are used 

to sample the diagnostic sine waveform at lower rates than that of the system’s 

clock which are 
2

clk , 
4

clk , 
8

clk , 
10
clk , and 

16
clk . The twice as much version is 

used in the dspPack process to provide more clock resolution for manipulating 

the incoming/outgoing asynchronous data. 

 sinewaveform Module: supplied by Xilinx’s core generator as a means of 

assessing the maximum achievable USB bandwidth and demonstrating the co-

designed GUI software functionalities. 

 DSP_Driver Module: This module is an asynchronous state machine that is 

controlled solely by the DSP’s strobing signals. 

 synchronizer Module: This module synchronizes the signals outputted by 

DSP_Driver to the internal clock in Main. The synchronization mechanism 

will be discussed later in the DSP-related Hardware Design chapter. 

 
4.4.1 A closer look at SX2_Utilities package 
 
SX2_Utilities contains type definitions and constants used throughout the code. For 

instance, both USB descriptor and internal register definitions are implemented as 

arrays of constant values. While mySX2Descr is a 1D array of 148 values detailing 

various USB enumeration fields (such as VID, PID, and Endpoints configurations), 

sx2RegsDef is a 2D array whose first column corresponds to the indices of internal 

registers and second column corresponds to their desired bit patterns. VHDL 

automatically allocates ROM blocks for these arrays without explicit instantiation and 

initialization from the designer. Furthermore, SX2_Utilities contains two classes of 

functions and procedures; simple utility functions and SX2 timing procedures which 

are meant to be called from within a process on active clock edges until completion. 

In addition, by passing current and next state signals as arguments to a procedure, this 
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procedure can alter the current state of the sub FSM whenever desired once 

completed. 

Utility functions and procedures include: 

 strobe  

 de_strobe  

 toggle  

 next_step  

 reset_step  

 increment  

 reset_index  

SX2 procedures are:  

 single_async_read  

 single_async_write  

 sx2ReadRegAsync  

 sx2WriteRegAsync  

 interrupt_status_read  

 latch_addr_asyn_WR  

 signle_fifo_async_read  

 signle_fifo_async_write  

 end_packet_asyn  

 waiting_loop  

It is beyond the scope of this chapter to describe the implementation of every single 

function. Nevertheless, the state machine for sx2WriteRegAsync will be detailed as a 

sample to illustrate the general concepts deployed in the implementation of all 

procedures. 

Figure 4.4 shows the state machine for sx2WriteRegAsync procedure. The syntax of 

the flowchart is meant to convey the algorithmic behaviour of the procedure 

independently of the actual VHDL code. For instance, wait(SETUP_TIME) signifies 
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that addr is allowed a window of SETUP_TIME in which to settle before asserting 

signal wr. In the VHDL code, succession of states containing the statement 

next_step(dispatcher) are inserted to generate the necessary timing. That is, the 

clock resolution determines how flexible the resultant timing can be. The 

manufacturer specifies minimum timing parameters for each asynchronous operation. 

Ultimately those parameters are functions of many physical properties such as 

temperature, fanout, and drive current. Thus it is advisable that the designer leaves a 

relaxed margin accounting for possible variations due to the mentioned factors. 

 

 
Figure 4.4: sx2WriteRegAsync state machine 
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Listing 4.4 shows roughly how timing parameters are being generated. 

Listing 4.4  

case dispatcher is 
 . 
 . 

when 10 => 
  next_step(dispatcher); -- \ 
      --  \ 
 when 11 =>    --  / 2*40 ns = 80 ns > 50 ns 
  next_step(dispatcher); -- / 
As shown in the flowchart, the procedure checks and polls if necessary on the 

READY flag after each operation before proceeding to the next. Towards the end, the 

dispatcher is reset, the current state is assigned the next state, and the status flag is 

assigned the finished state. The finished flag is the terminating condition upon which 

the synchronous calling program will stop evaluating the procedure on active clock 

edges. Listing 4.5 demonstrates a typical situation for calling a procedure from within 

the mainstream process. 

Listing 4.5  

when CONFIG => 
case index is 

  when 0 =>  -- Write register 
   val := sx2RegsDef(i,1);  
   if (val = X"FE") then 
    status <= INPROGRESS; 
    current_state <= SETDESCR; 
    next_state <= SETDESCR; 
    i := 0; 
    index := 0; 
    LED1 <= '1';  
   elsif (status = FINISHED) then 
    status <= INPROGRESS; 
    i := i + 1; 
    index := 1; 
   else 
    sx2WriteRegAsync(dispatcher, next_state, current_state, 
        status, 
        wr, RDY, addr, w_data,  
        sx2RegsDef(i,0), val 
        ); 
   end if; 
 

The procedure is called successively until one of the conditions of the if-statement is 

met. The programmer may or may not wish to alter the current execution state 

according to the combination chosen for current_state and next_state. It is 

extremely important that the nesting of the if-statements ensure that worst case output 

propagation can occur within the system’s clock period. For this reason, a relatively 

slow clock (25 MHz) was chosen for the mainstream process responsible for 
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initialization and packets sending which are the operations that make use of the 

bus_driver module. While it was necessary to use faster clock of more time 

resolution when dealing with external asynchronous signals coming out of the 

dsp_driver. 

 
Finally, the module view of the developed design is presented in figure 4.5. The figure 

shows that the use VHDL test benches was vital in the theoretical behavioural model 

simulation and in the post-place & route model simulation. As a simulation means, 

VHDL acquaints the designer with additional powerful concepts such as inertial and 

transport delays which emulate the realistic behaviour of hardware. 

 

 

Figure 4.5: Design module view. 
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Chapter 5  
 

DSP-Related Digital Hardware Design 
 
 
 

Out of the various implemented VHDL modules, two are directly involved with the 

outside asynchronous DSP signals. These are dsp_driver and synchronizer 

modules. dsp_driver interfaces to the DSP’s parallel port strobe signals, while 

synchronizer makes the dsp_driver signals align with the internal clock of the 

system. In the coming two sections, both modules will be investigated thoroughly 

revealing all design aspects that had to be met. 

 

5.1 DSP INTERFACE 
 
 
5.1.1 Introduction 
 
The ADSP-21262 is a powerful 32-bit DSP that is ideal for many applications 

including the imaging problem [20]. Its architecture combines a powerful 400 

MMACS or 800 MFLOPS processing core with high performance dedicated buses for 

Program Memory (PM), Data Memory (DM), and I/O. This enables multiple accesses 

to be issued in a single instruction. To be more precise, the DSP can access two data 

operands from memory blocks, fetch an instruction from cache, and perform a DMA 

transfer in every instruction. Furthermore, the DSP has 22 DMA channels that support 

a wide variety of peripherals including one parallel port, serial ports, SPI ports (Serial 

Peripheral Interface), and input data ports [28]. Thus, in order to make use of the 

Direct Memory Access feature of the DSP, one of the mentioned peripherals has to be 

exploited. In a DMA-driven transfer, the processing core is only involved at the 

beginning and end of the transfer and is free to perform other tasks during data 

transfer. In other words, a DMA-driven access requires no intervention from the 

processing core, resulting in transparent access to the DSP’s on-chip memory with 

maximum processor utilization. In the project’s context, processor utilization is 

defined as the effective instructions (whether computational or control) that the DSP 
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executes while performing the intended algorithm as opposed to those performed by 

the DSP to transfer data or to interact with events originating from the outside world. 

In mathematical sense, processor utilization can be described as follows:

 %100×
+

=
effectiveoverhead

effectivenutilizatio  

As far as the throughput is concerned, the parallel port is the most promising 

peripheral to interface with. When interfacing to intelligent or memory-mapped 

peripherals, the parallel port can accommodate for up to 132 Mega bytes per second. 

Clearly, such a raw high bit stream of 1.056 Gbps is incommunicable to PC via 

USB2.0. Nevertheless, the availability of such high bandwidth link between the 

FPGA and DSP adds to the versatility of the system and allows for more sophisticated 

exploitation of the overall platform. For instance, if the DSP was thought of as a 

centralized floating-point processing unit, the presence of such a high throughput port 

could facilitate a back-and-forth operation upon requests from a master FPGA. The 

system being developed at the moment presumes that operations are being solely 

initiated and controlled by the DSP as a true master. This needs not always be the 

case, as it can waste precious processing utilization. At the far end of the system, 

specifically, in the acquisition nodes, FPGAs have been so far restricted to 

preliminary conditioning DSP operations in a complementary fashion, whereas the 

master DSP performed the rest of the tasks including algorithm-control ones. 

However, emanating from the nature of the problem being tackled, assigning control 

and interface tasks to the FPGA and highly demanding processing tasks on the 

floating-point DSP may improve the design complexity limit for which the underlying 

platform can accommodate e.g. hardware implementation of neural network [16]. 

 
From a first glimpse, it may seem that there is a caveat associated with the use of the 

parallel port. Due to its very nature, it is dominantly being controlled by the DSP. 

Contemplating this for a second, the solution may seem quite trivial. One can 

associate the read/write operations with interrupts upon which the DSP commences 

reading from or writing to the FPGA. This brings back balance to the proposed 

master-slave relation between the FPGA and DSP respectively. In a single task 

system, the relation between the FPGA and DSP is of little importance as the DSP is 

always expected to perform a predefined set of tasks in the fastest possible manner. 
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On the other hand, when looked at as a floating-point localized processing unit in the 

platform, the DSP’s task can be very much dynamic. An example can be a non-linear 

adaptive algorithm that is being controlled by the FPGA with zero utilization 

overhead. The FPGA can request different operations from the DSP depending on the 

current situation while convergence is in progress. Of course, there is a tiny overhead 

with regards to implementing a protocol that facilitates various scenarios. However, 

with such good degree of coupling available between the reconfigurable fabric and the 

CPU [29], such issue can not pause serious bottleneck problems in this working 

scheme. Moreover, from the DSP’s perspective, the algorithmic overhead 

accompanying such a scheme is minimal as decoding a readily available command is 

faster than going through the chain of deduction which has led to the issuing of this 

command in the first place. In very simple words, if the FPGA is allowed to do what it 

is good at (customized parallelism) and the DSP is guaranteed a fully operational 

pipeline (effective instructions), the overall platform can be tuned to approach even 

the highest computationally demanding class of applications. 

 
5.1.2 Parallel port description 
 
Before presenting the asynchronous VHDL design developed to interface with the 

DSP’s parallel port, the latter needs to be described first. Figure 5.1 shows a block 

diagram of the parallel port. 
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Figure 5.1: Parallel port block diagram [28] 

 
The parallel port utilizes three signals and a 16-bit bus. 

 Address/Data bus (AD<15:0>) 

 Read strobe ( RD ) 

 Write strobe(WR ) 

 Address latch enable (ALE) 

The use of these pins will become apparent while explaining the VHDL code. 

 
5.1.3 DSP_Driver module 
 
DSP_Driver is the module responsible for interfacing with the DSP’s parallel port 

pins. This module consists of seven concurrent processes five of which are 

responsible for the asynchronous detection of ALE , RD , and WR . Processes 

WAIT_ALE_proc, WAIT_WR_Ris_proc, WAIT_WR_Fal_proc, and WAIT_RD_Ris_proc 

are edge-sensitive while WAIT_RD_Fal_proc is level-sensitive. This arrangement is 

important because of the nature imposed by the 8-bit mode interface. The 8-bit read 

interface was necessary to be implemented in order to successfully boot the DSP from 

the FPGA. While the 8-bit write interface was not implemented because it simply 
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offers no advantage over the 16-bit mode, although modifying the current design to 

include the 8-bit write mode is straightforward. Fundamentally, the parallel port boot 

mode uses the 8-bit interface in order to be able to address up to MB of 

external memory space. The DSP driver port is segregated logically into external and 

internal. The external portion interfaces to the parallel port’s signals plus a DSP 

enable pin by which to activate the parallel port operations. The DSPEN pin is used to 

instruct the DSP to start transmission/reception. The internal portion or the port 

includes:  

16224 =

 ioe_AD: controls the input-output tri-state buffer for bidirectional AD bus 

instantiated in Main. Because of synthesis purposes, Xilinx design tools 

requires that buffers be instantiated only in the top module of the design 

hierarchy. Ioe(0) controls the lower tri-state buffer byte and ioe_AD(1) 

controls the upper one. Again this was done in order to meet the 8-bit mode 

timing specifications. Since two separate processes (WAIT_RD_Ris_proc and 

WAIT_RD_Fal_proc) are required to modify ioe_AD in accordance to the mode 

of operation (8-bit/16-bit), it is necessary to have process ioe_AD_mux_proc 

multiplexing between ioe_AD_Ris and ioe_AD_Fal subject to whether 

RD_bar is high or low. 

 dsp_commence_syncFlg: can be thought of as the asynchronous reset of the 

five processes to be manipulated by the process which will make use of this 

module. 

 dsp_status: is implemented using a concurrent VHDL signal assignment. For 

the 16-bit read from DSP operation (wait on WR  with ALE  cycle present), it 

is analogous to the FINISHED flag whose functionality was explained in the 

previous chapter. When ALE  cycle is only sent at the beginning of the 

transfer, it is the result of the constant comparison of the ever toggling flags 

upon both WR  edges. For 8-bit write to the DSP operation (wait on RD ), it 

simply detects a RD  falling edge on which to place data on the lower bus 

byte. That is, the functionality of this pin changes according to the desired 

mode of operation set by dspAccessMode and dspRdWr. 

 dspAccessMode: determines whether the module is to expect an 8-bit or 16-bit 

interface mode. 
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 dspRdWr: of particular importance for the addr_mux_proc process that 

determines how to pack the internal 24-bit dsp_address_out. The reception 

of a valid address depends on the current operation being performed 

(read/write) and its mode (8-bit/16-bit) as well. Internally this is accomplished 

via local signals signifying the occurrence or relevant external events namely 

validDataInRis and validDataOutFal.  

 dsp_address, dsp_data_in, dsp_data_out, and dsp_enable are self-

explanatory. 

Figure 5.2 shows a typical timing diagram for the a16-bit mode read operation (wait 

on WR ) 

 

Figure 5.2: 16-bit write  

 
This is a simple example in which the module receives two 16-bit words both on the 

falling edge of the ALE  and the rising edge of the WR . Two internal signals are 

toggled upon each reception. By continuously comparing these signals one can 

determine when both words have been received. At the end of the ALE  cycle, a 16-

bit address word has been received. After toggling the validAddr signal, dsp_status 

(defined as validAddr xnor validDataInRis) goes to zero because a valid data has 

not yet been received. When the validDataInRis signal goes high upon the rising 

edge of WR , dsp_status becomes true again signifying that a valid address-data 

combination is now available to be sampled from the internal portion of the interface 

bus. Utilizing this simple yet powerful mechanism, an external process can tell when 

to sample the interface signals by probing the dsp_status signal. However, the issue 

of synchronizing these signals with respect to the internal clock is yet to be tackled. 
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For this reason, synchronizer is first applied to dsp_status, dsp_address, and 

dsp_data_in before a synchronous process can receive these signals. 

 
As with regard to the 8-bit write mode (wait on RD ), every 256 RD  cycles, the DSP 

updates the upper 16-bit address (ADDR<23:8>) in one ALE  cycle. The least address 

byte (ADDR<7:0>) is supplied on the upper AD byte every RD  cycle. Thus on the 

falling edge of RD , DSP_Driver reads ADDR<7:0> and places a valid data byte on the 

lower AD bus as soon as it becomes ready. On the rising edge of RD , the DSP latches 

the data byte with zero hold time requirements. That is why WAIT_RD_Fal_proc was 

implemented as level-sensitive rather than edge-sensitive. When including 

dsp_data_out in the sensitivity list, later changes made to dsp_data_out are 

allowed to propagate after the occurrence of the falling edge. Figure 5.3 illustrates this 

scenario.  

 

Figure 5.3: 8-bit read cycle 

 
 

5.2 SYNCHRONIZATION MECHANISM 
 
It was established earlier that the reception/transmission of words in the dsp_driver 

module occur asynchronous to the system’s clock due to the fact that they are 

controlled solely by the parallel port signals. This generates the need to synchronize 

the incoming signals in order to guarantee their integrity.  
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synchronizer takes as inputs dsp_status, dsp_address, dsp_data_in, in addition 

to the clock to which these signals are to be synchronized. It outputs synchronized 

versions of the above signals namely; sync_out, sync_address_out, and 

sync_data_out. Moreover, sync_out is a trimmed version of dsp_status that 

extends over one clock cycle precisely. This ensures that even though dsp_status 

might still be on for sometime until the reception of new valid address in a new ALE  

cycle, it is only detected once in the synchronous process that polls on dsp_status. 

This arrangement relieves the internal clock resolution from any dependency 

whatsoever on the external asynchronous signals, provided that the internal clock 

resolution is fast enough to allow for the detection of the DSP’s signals and to act 

upon them accordingly.  

synchronizer accomplishes its functionality through the use of two signals namely 

event0, and flag, and three processes of which one is completely asynchronous. 

proc0 operates on async_signal and assert/deassert signal event0 whenever 

async_signal is high/low. In turn, proc1 and proc2 have both clk and event0 in 

their sensitivity lists. Listing 5.1 shows the VHDL code for both processes. 

 
Listing 5.1  

 proc1 : process (clk, event0) 
 begin 
 if (clk = '0' and clk'EVENT) then 
  if (flag = '0' and event0 = '1') then 
   sync_out <= '1'; 
   sync_address_out <= async_address_in; 
   sync_data_out <= async_data_in; 
  else 
   sync_out <= '0'; 
  end if; 
 end if; 
 end process; 
 
 proc2 : process (clk, event0) 
 begin 
 if (clk = '0' and clk'EVENT) then 
  if (flag = '0' and event0 = '1') then 
   flag <= '1'; 
  elsif (flag = '1' and event0 = '0') then 
   flag <= '0'; 
  end if; 
 end if; 
 end process; 
 
Always synchronized to the falling edge of the clock, proc1 transmits its input port to 

its output port if event0 is detected while flag is zero. Otherwise, sync_out is pulled 
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low. proc2 ensures that during one high cycle of event0, flag is only allowed to stay 

low for one clock cycle. Unless event0 is reset by proc0, flag stays high. 

Synchronizing these processes to the falling edge is extremely important for the 

following reason. Since the system’s internal logic is operating on the rising edge, the 

incoming signals should be allowed a finite time in which to settle and propagate 

before being sampled again at the rising edge. Otherwise, depending on logic routing, 

sync_out, sync_address_out, and sync_data_out may or may not happen to 

coincide with the rising edge resulting in probable error on random basis which might 

even affect certain bits non-uniformly. This conforms to the classical rule in digital 

logic design; always transmit at one clock edge and receive on the other. 

 
 

5.3 DSP BUFFERING SCHEME 
 
Similar to the packing scheme encountered earlier for the digitally synthesized sine 

waveform, the DSP utilizes a buffer to be read from or written to by two distinct 

processes interchangeably. However, this time only one buffer is needed. Because the 

two processes alternate between read and write operations, all buffer signals except 

for the data read out have to be multiplexed ensuring that no multi-source signals 

occur. In the terminology depicted in figure 5.3, Prs suffix denotes process signals 

while Thrd signifies thread ones. While there is no ultimate distinction between 

processes and threads hardware-wise, a hardware thread or a spatial thread [30] refers 

to a portion of synthesized sequential logic that complements and aids the main 

process. That is, process dsp_packing is a thread while process mainstream is a 

process. Figure 5.4 shows the metaphoric schematic equivalence of the developed 

VHDL code. 

 

 55



 
Figure 5.4: DSP buffering scheme 

 
Table 5.1 illustrates the interchangeable operations set by signal dsp_Sel. 
 
Table 5.1: dsp_sel operations 

Dsp_Sel OPERATION 
0 read Prs 

write Thrd 
1 write Prs 

read Thrd 
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Chapter 6  
 

Experimental Results & Analysis 
 
 
 

In this chapter, various experimental issues along with their analysis will be 

presented. The chronological order of the following subsections reflects the natural 

course through which these issues were tackled. 

 

6.1 MISCELLANEOUS HARDWARE DESIGN 
CONSIDERATIONS 

 
During the VHDL hardware design phase, a rather unexpected set of considerations 

needed to be addressed. Some of the attempted solutions were found after 

investigating some third-party reference designs while others were completely 

spontaneous. The following discussion will describe and detail all encountered cases 

along with their solutions. 

Firstly, Right from the very beginning, when resetting the SX2 chip, a minimum delay 

of sμ200  had to be inserted both while reset is low and after reset is pulled high. The 

second delay interval allows the internal logic of the SX2 to stabilize before 

proceeding with configurations. This is relatively straightforward and logical. 

However, experimentations showed that unless SX2 pins were tri-stated while reset is 

in progress, the SX2 chip may behave quite strangely in the subsequent operations. 

This may be due to some sort of leakage current that affects the state in which SX2’s 

internal logic starts up after reset. 

Secondly, while configuring the internal registers of the SX2, it turned out that a delay 

after each register write operation had to be inserted. Otherwise, the chip stops 

generating interrupts. This particular problem needs clarification from Cypress. The 

solution for it was found when investigating a third-party C driver code written 

originally for an embedded OS called VxWorks [31]. In the C code, the delay is 

specified as a call to a function whose parameter is an integer signifying the units of 
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delay needed. In VHDL, a very relaxed delay of sμ300  was appended to each register 

write operation. 

Thirdly, when writing the USB descriptor, the programmer has to ensure that 

complete 500 bytes are written to the internal memory, regardless of the real length of 

the customized descriptor. In VHDL, after committing 148 bytes to the descriptor’s 

RAM, consecutive fictitious writes had to be performed until the index becomes 500. 

It seemed as if the descriptor RAM required those fictitious writes to increment some 

internal counter which is logically ‘and’-ed with whatever triggers enumeration later. 

Fourthly, for the enumeration to occur properly, the ENUMOK interrupt flag had to 

be polled on. In other words, experimentations showed that it was not sufficient to 

expect the occurrence of ENUMOK directly after the SX2 had been connected to the 

PC. Rather, the FPGA repeatedly waits on interrupts and reads them. Unless the 

current interrupt is ENUMOK, the FPGA keeps on waiting for yet another interrupt. 

This is unexpected as the manufacturer specifies that once the SX2 is connected to the 

PC, ENUMOK is the first interrupt to occur. 

Finally, when switching to the 16-bit FIFO access mode, a dummy packet has to be 

committed first before starting regular packet sending process. Initially, all FIFO 

accesses were carried out using the default 8-bit mode. Then realizing that packing 

rate can be twice as much when utilizing the 16-bit FIFO access mode, it seemed 

obligatory to exploit this feature. Nevertheless, once the WORDWIDE bit in the 

EPxPKTLENH register is set, the very next packet to be committed though that 

endpoint has to account for the fact that its reception on the PC side would be 

erroneous. Therefore, a dummy packet had to be sent first in order to allow the 

internal FIFO logic to adapt to the new configurations. 

 

6.2 FPGA INTERNAL LOGIC ROUTING 
 
6.2.1 Problem encountered & solution 
 
At some point during the project development, after a continuous connection was 

successfully established, the mere inclusion of any form of additional logic caused the 

system to randomly stop transmission or even collapse altogether. That is, once any 

extra logic was added to the VHDL design, the system either interrupted packet 
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transfer after a random number of packets or failed to enumerate with the peer PC in 

the first place. This was amongst the most serious unforeseen difficulties encountered 

in the project. Doubt was applied systematically to virtually every aspect that had 

been achieved thus far. The similar reference designs investigated utilized high-end 

DMA controllers [32] [33] with typical internal clock of 130 MHz and thus much 

more time resolution. Coupled with some inconsistencies in what turned out later to 

be PC-related problems (refer to section 6.3), the robustness of the 25 MHz FPGA 

asynchronous interface was even questioned. The effect of the FPGA internal logic 

routing on the stability of the system’s performance was unprecedented. After 

spending a significant amount of time trying to troubleshoot this problem, it was not 

until the addition of a mere signal had caused a system’s failure that the nature of the 

problem has started to emerge. This indicated that something wrong took place in the 

FPGA. Between a fully working design with no additional signal routed to the 

debugging port, and a totally failing scenario with the inclusion of that signal, there 

was a mere debugging signal. The sudden deterioration of the system was at last 

traced at the synthesis & implementation options.  

In the synthesize process properties, the following modifications were introduced: 

 Optimization goal & effort: speed & high respectively. 

 FSM encoding: gray. 

 Max fanout: 100. 

In the implement process properties, the following changes were made: 

 Optimization strategy: speed as opposed to area. 

 Place & route effort: high. 

After re-performing the synthesize and implement processes, the resultant design was 

downloaded again to the FPGA, only this time to work with the newly added logic. 

 
6.2.2 Analysis 
 
The difficulty of the problem is due to its twofold nature. Depending on the type of 

the logic added, the system either collapsed or degraded. The best theory fitted to 

these symptoms can explain to a high degree of confidence the failure of the system, 

but not the random pattern manifested in the number of packets received before 
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transmission is interrupted. The following discussion will attempt to explain the 

encountered behavior. In addition, the discussion will be restricted to symmetrical 

volatile-memory FPGAs such as SPARTAN-3. 

In volatile-memory FPGAs, reprogrammable Static-RAM cells control pass 

transistors that steer signals to make routing paths [34] (Figure 6.1). These switches 

are characterized by being both resistive and capacitive resulting in large delays (RC), 

which dominate that of a CLB. It is the incremental nature of these delays that makes 

routing so critical (cumulative effect) and path dependent.  

 

 

Figure 6.1: SRAM-based pass transistors 

 

As shown in figure 6.2, CLBs and IOBs connect to interconnect segments in wiring 

channels, and wiring channels intersect at switchboxes (SBs). On one hand, 

interconnect segments are logical connects i.e. they can be made up of portions 

interleaving several mask layers. One the other hand, due to their large size and 

capacitive nature, pass transistors within a switchbox have limited connection 

possibilities of further variable lengths as depicted in figure 6.3. In other words, the 

uniformity of interconnect segments whether in wiring channels or in switchboxes is 

sacrificed in the favor of area (logic density)  
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Figure 6.2: Symmetrical FPGA Architecture 

 

 

 

Figure 6.3: Limited Routability [35] 
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Figure 6.4 shows a typical routing scenario for the CLBs and SB depicted in figure 

6.3. 

 

Figure 6.4: A routing example [35] 

 
Also FPGAs architecture addresses some other needs such as dedicated clock routing 

for minimal skew problems. 

Furthermore, routers typically use additional strategies that might help in optimizing 

designs of which the following are typical: Firstly, routers might employ unused logic 

resources as routing resources. Secondly, utilizing silicon-characteristic parameters, 

routers can model the effects of various resources to calculate delays which would be 

used to assess potential propagation delay of a route for a given option.  

As a matter of fact, routing can be thought of as a search problem whose states 

(branches in a search tree) are partial routes. The above techniques specific to this 

search problem are used as domain-specific knowledge which help in converging to 

an optimal solution. In addition to testing whether the final goal is reached, estimator 

function assesses the remaining distance to the goal state, and successor function 

yields a combination of possible states to which the current state can go. The most 

important function in the search problem is the Heuristic function which assesses the 

goodness of a partial route against other options. In the routing problem, the Heuristic 

function will attempt to minimize critical path delay under timing and routing 

constraints [36]. The Heuristic function may use the following condition: 
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vuvu aDa ≤+   where  tEvu ∈∀ ),(

ua  is the arrival time at node  u

va  is the arrival time at node  v

uvD  is the delay along  ),( vupath

tE  is the matrix of routes relative to the current state in the search tree  { }mTTT ,...,1=

In order to evaluate this heuristic function, some general techniques for solving 

optimization problems with difficult constraints are deployed such as Lagrangian 

Relaxation [35].  

 

On top of what has been mentioned so far, the fact that various constraints, whether 

user or architectural, are strongly coupled with global routing problem requires that 

routing be performed simultaneously through cooperative processes. Wiring channels 

offer limited flexibility to neighboring resources (IOBs or CLBs). This makes user pin 

assignments propagate to interconnect segments allocations. The latter is coupled 

through SBs constraints to interconnect segment assignments of other channels 

rendering routing a global problem. That is, routing can not be spatially decomposed 

into smaller independent manageable problems. Fundamentally, this adds more 

breadth to the search problem. For this reason, simultaneous routing can utilize 

cooperative concurrent processes with excessive-delays-based heuristic function as a 

way of casting preference. 

 

It was established earlier that routing delays are more predominant than that of the 

abstract logic ones and that performance is highly influenced by cell placement [37]. 

The key factor behind the total collapse of the system is its self-timed aspect. As 

enough clock cycles were inserted to generate timing specifications set by the SX2, 

there was no need to specify timing constraints. At some stage, the inclusion of 

additional resources changed routing and in turn degraded performance due to less 

optimized paths that violated SX2 timings. Depending on the magnitude of the 

additive logic resources, the system either collapsed or degraded. Additive resources 

necessitate that routing be placed through difference paths in order to accommodate 

for the optimal utilization of area and pin assignments. Changing optimization 

strategy to timing-based rather than area-based improves critical paths delay. While 

altering the effort properties to high forces the synthesizer and implementer (place and 
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route) into considering more states in the search tree which will improve performance 

eventually. Decreasing the fanout property from 500 to 100 relieves the system from 

some unnecessary burdens. Gray encoding in principle is more noise immune as only 

one bit is likely to change while in a given state. The latter option was modified out of 

desperation and is of no significant impact inside the FPGA, except that it might 

consume a little bit of extra logic as its encoding is more logic demanding that a 

regular adder. However, what is left yet to be inferred is the following: in some cases, 

the inclusion of additional logic had caused the SX2 to interrupt its transmission after 

some arbitrary number of packets. A possible cause for this is accidental worst case 

propagation delay scenarios which had taken place on a near-random basis. 

Combinational logic circuitry may be forced to propagate through all possible logic 

levels depending on its inputs. As SX2 functions were developed in an almost 

behavioral manner, it is extremely difficult if not impossible to trace this back because 

the Xilinx synthesizer automatically produced their logic resources. More 

sophisticated IDE tools such as ModelSim allows the developer to examine his/her 

designs interleaving among different representations. A logic design developed in 

VHDL can be examined more closely by checking its RTL equivalence. Recently, a 

huge amount of effort is being put towards implementing full behavioral synthesizers 

[38-42] that will significantly improve both complexity and time-to-market issues 

associated with contemporary cutting-edge logic designs.  
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6.3 USB2.0 ENDPOINT BANDWIDTH 
 
 
6.3.1 Streaming through isochronous endpoint 
 

The USB2.0 specifications define the isochronous transfer as being periodic with 

continuous communication between host and device, which is typically used for time-

critical information. This is achieved by encapsulating time-indicative information in 

the data. It does not support error detection and correction (CRC), thus unreliable. 

Typical application is video streaming at which a minor loss of data may not be even 

observable [43]. 

Unlike bulk transfer, when using isochronous transfer, a pre-negotiated portion of the 

available bandwidth in each microframe is reserved by specifying the 

wMaxPacketSize field of the endpoint descriptor. Moreover, the latency of the 

delivery is specified via the bInterval field of the endpoint descriptor. The latency is 

the rate at which the host retrieves isochronous packets from the USB device per 

microframe. 

 

In principle, both bulk and isochronous endpoints can yield identical throughput when 

operating in an equivalent manner. The criterion upon which bulk and isochronous 

endpoint are considered equivalent is a function of size, availability of bandwidth in a 

microframe, and polling interval. Size intuitively refers to both endpoints having the 

same packet size. Since bulk type uses bandwidth leftovers in a microframe, the rate 

at which a bulk endpoint operates is governed by the production of its data plus the 

current status of the microframe. When operating alone, a bulk endpoint can use as 

much bandwidth as the microframe can accommodate bearing in mind the size of the 

bulk packet. On the other hand, an isochronous endpoint must be pre-allocated a 

certain amount of bandwidth to be used every polling interval. Effectively, this allows 

the isochronous endpoint to operate at a rate lower than that of a microframe. A 

technique called PID sequencing orders isochronous packets sent within one 

microframe [44]. 
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Away from ideal conditions, an isochronous endpoint is more promising in terms of 

throughput. While a bulk endpoint is protected by CRC that has to be acknowledged 

by the recipient, an isochronous endpoint does not guarantee data integrity. The 

overhead of handshaking in bulk type forces the resending of a packet whose just one 

bit might have toggled during propagating through the physical medium. If used for 

very high-bandwidth streaming, the slightest error in a packet might be unrecoverable 

resulting in transmission stoppage. Whereas in an isochronous type, data in packets 

might get affected by minor errors and still be received properly. The key difference 

between the two types is the handshaking overhead that deploys a CRC error check 

before flagging the successful reception of a packet. 

In order to optimize the USB bandwidth, an isochronous endpoint was first utilized 

through which data were streamed. The appropriate modifications were introduced to 

sx2RegsDef double dimensional array so that all relevant registers were configured 

accordingly. In addition, the high-speed section of mySX2Descr array describing 

endpoint 6 was setup for the intended task. Surprisingly, the obtained results were not 

up to the expectations. The following paragraph discusses the background of the 

problem that has led to some disappointing outcomes. 

When first released as a legal document, USB did not support isochronous transfer 

type. This type was appended at a later stage out of necessity. As it is the case with 

any introduction of novel solution in the IT world, many organizations operating 

across the spectrum start working in parallel to welcome the new offspring. For this 

reason, Windows XP service pack 1 did not support isochronous transfer at first. 

Microsoft released a patch to solve this problem [45]. Nevertheless, many people 

reported inconsistencies associated with the isochronous type. Microsoft claims that 

this problem is solved altogether in the service pack 2. One the other hand, Intel® 

have identified that 82801 USB2.0 chipset may have intermittent communication or 

connection problems [46]. Intel is not planning any long-term fixes to these issues and 

spontaneous solutions may propagate as deep as a bios update.  

This research was conducted after identifying the strange problem. Yet all what could 

be deduced about it does not exceed the realm of speculations. For each packet, a time 

interval of 6 to 7 seconds was observed when streaming through an isochronous 

endpoint of 1024 KB size, one transaction per microframe, and a polling interval of 1 

( ). Clearly as it may seem, a 7 seconds interval is totally illogical. An )11(2 −
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oscilloscope was utilized in order to examine a flag indicating whether the double-

buffered endpoint FIFO is full or not. The examination showed that the flag is almost 

all the time asserted except for a tiny interval in which the FPGA is allowed to write 

more data to the buffer. This reveals that the problem is solely related to the rate at 

which the PC is fetching packets. Indeed, it turned out that manual consecutive single 

reads yielded a faster rate than that of the automated sequence. This was achieved in 

the program by bypassing the stage in which the user specifies various transaction 

parameters and substituting it with a press of a button. In an attempt to remedy this 

problem by means of programming, a polling thread was developed whose job is to 

wait for the transmission to complete before requesting yet another transmission. The 

approach was part of an attempt to trace the source of the problem narrowing down 

potential causes. Since manual consecutive reads yielded a better rate than the 

automated one supplied as part of the USB DLL, it seemed logical to try a customized 

automated approach that gets around the potential source of the problem. Listing 6.1 

shows part of the code deployed. 

Listing 6.1  

if (!rdActivePipe.IsIsochronousPipe()) 
{ 
 rdActivePipe.SetContiguous(true); 
 rdActivePipe.UsbPipeTransferAsync(true, TIME_OUT,  
 new D_USER_TRANSFER_COMPLETION(ListenCompletion)); 
} 
else 
{ 
 pollOnPacketDelegate = new PollOnPacketDelegate(PollOnPacket); 
 onPollingComplete = new EventHandler(OnPollingComplete); 
 this.PollingComplete +=new EventHandler(DefaultInterface_PollingComplete); 
 
 pollOnPackThread = new Thread(new ThreadStart(PollingThread)); 
 pollOnPackThread.Start(); 
} 
. 
. 
public void PollOnPacket () 
{ 
 // Wait for transmission to finish 
 while(rdActivePipe.IsInUse()); 
 
 int rdlBuffSize = rdActivePipe.GetBuffSize(); 
 byte[] lbuffer = new byte[rdlBuffSize]; 
 
 rdActivePipe.UsbPipeTransferAsync(true, lbuffer, rdlBuffSize, TIME_OUT,  
  new D_USER_TRANSFER_COMPLETION(TransferCompletion)); 
 
 while(rdActivePipe.IsInUse()); 
 
 if(rdActivePipe.GetTransferStatus() != (int)wdu_err.WD_STATUS_SUCCESS) 
 { 
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  LogMsg(string.Format("Transfer Failed! Error {0}: {1} ", 
   rdActivePipe.GetTransferStatus().ToString("X"), 

wd_status_string_module.GetStat2Str(rdActivePipe.GetTransferS
tatus()))); 

 }                                 
else 
{ 
. 
. 
 
 

The resultant isochronous listening approach involved a long time in the busy-waiting 

state rendering the overall GUI irresponsive (trapped in 

while(rdActivePipe.IsInUse()) statement). In short, the polling thread literally 

ate too much processor execution time according to the OS vocabulary. 

Digging deeper in the DLL, the original C++ implementation of the call-back function 

was examined. It turned out that the C++ call-back function uses multithreading 

which is identical to what had been attempted. After some research in the example 

codes provided by the third party software, a webcam application was spotted which 

utilizes isochronous transfer as a means to communicate the video stream. Examining 

the C++ specific implementation, the C++ function used for transferring the 

isochronous packets used a specific parameter which was not supplied in the C# 

wrapped DLL. The DLL was modified to include the same constant parameter and the 

test was conducted again. Nevertheless, the results remained the same. With this, the 

attempts to solve the problem associated with the isochronous type were brought to an 

end, because of restrictions by the project timescale and resources. Unfortunately, this 

leaves uncertainty and speculations about the identified OS-related problem. 

To conclude, it is worth pointing out that some software packages such as Labview® 

do not support isochronous type at all. This demonstrates how the late inclusion of the 

isochronous type in the USB2.0 specifications affected the third-party support for this 

particular transfer type. 

 

 
6.3.2 Streaming through bulk endpoint 
 
After giving up on the isochronous option, the bulk type was used. The initial testing 

results showed a pattern of totally random number of packets that were received 

before the transmission was interrupted altogether. Gradually an increasing delay was 
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inserted until a continuous stream of packets was observed in the soft scope. The 

following calculations detail the timing aspects associated with that working scheme. 

Digital sampling rate: MHzMHz 125.3
8

25
=   sampling period = 320 ns 

With 2 Bytes per sample  packing rate: 6.25MBytes/sec 

Packet frequency = Hz
packetperBytes

MBytes 515625.103,6
1024

1025.6
__

sec/25.6 6

=
×

=
+

 

Packet period = sμ84.163  

Effective packet period = packet period + delay inserted = 

sss μμμ 84.1832084.163 =+  

Effective packet frequency = 5439.51262 Hz 

In order to slow down the system, the mainstream process was forced to poll on the 

status flag of the sine_packing process. Listing 6.2 shows how is this done in 

VHDL. 

Listing 6.2  

when SINE_PACK_SEND_LOOP => 
 

case index is 
  when 0 => 
   rwSel <= "01";  
   increment(index); 
 
  when 1 => 
   sinPack.syncFlg <= '1'; 
   increment(index); 
 
  when 2 => 
   if (sinPack.status = FINISHED) then 
    sinPack.syncFlg <= '0'; 
    increment(index); 
   end if; 
 
  when 3 => 
   rwSel <= "10"; -- toggle 
   thread_current_state <= IRRELEVANT; 
   thread_next_state <= IRRELEVANT; 
   thread_status <= INPROGRESS; 
   increment(index); 
 
The overhead associated with committing a packet to the USB device is primarily 

determined by its iterative loop. Eleven clock cycles constitute the time needed for 
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each sample to be written to the endpoint FIFO. Thus roughly the overhead of the 

sending process is: 

snstoverheadsending clk μ56.45040102411102411_ =××=××=  

The total time taken before a packet is fully committed to the USB device FIFO is: 

ssstimeoverall μμμ 4.63484.18356.450_ =+=  

Of course, this timing can be speeded up by concurrently filling one of the buffers 

while sending is in progress. This was the very reason behind adopting a double-

buffering scheme which was designed with a high bandwidth interchangeable 

operation in mind. Since the performance was no near a bottleneck scenario whereby 

consumption is faster than production, neither concurrent operations nor time-efficient 

automatic FIFO mode were deployed. Had not this been the case, the packing process 

could have been assigned a faster clock and the RAM buffer could have been operated 

in the FIFO mode. 

The final rate at which packets were being sent can be computed as follows: 

MbpsMBpspackets
packet
Bytebitratehardware 912988.12614123.1

sec
)4.634(1024_ 1 ==×= −μ

The duration of a high-speed microframe has no effect on the hardware bitrate. After 

the first packet has been committed, the production of the next packet occurs while 

transmission is in progress. The production of a packet refers to all operations starting 

from buffering it in the FPGA and ending with writing it to the endpoint FIFO.  

As there was no means by which to observe what is actually taking place in the USB 

protocol, the assessment of the resultant bitrate had to be done by programming on the 

PC side. In order to do so, the following was done. Realizing that the refresh thread 

has a frequency of 10Hz (a sleep interval of 100ms), the occurrences of two 

consecutive refresh operations enclose in between a certain number of received 

packets. In the SoftScope class, three private members were added; previousBurst 

to hold the index of the last packet received when refresh was last called, average to 

store the computed bitrate, and flag to decide whether bitrate has been already 

computed. The code shown in Listing 6.3 was inserted to the refresh method 

Listing 6.3  

if (flag == 2) 
{ 
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average = (double)(Var.USB_Packet.BurstIndex - previousBurst)*1024/100e-3; 
} 
 
line = String.Format("Average endpoint throughput {0:F} KBps", average/1000.0F); 
lines.SetValue(line, 2); 
 
flag++; 
 
previousBurst = Var.USB_Packet.BurstIndex; 

The reason why average is computed after the second increment of the flag is in 

order to allow previousBurst to adapt to the previous BurstIndex first. average 

signifies the number of bytes received in a 100 ms interval (thread sleep interval). 

Surprisingly, the obtained average was only 30.72 KBytes per second i.e. thirty 

packets/sec (245.76 Kbps). Moreover, this figure degraded to nearly 20 KBps after 

some time. The manufacturer specifies that the maximum achievable throughput per 

endpoint is 24 MBytes per second. Nearly a factor of 800 separates the results 

measured on the PC side from what the manufacturer promises (24 MBps). A factor 

of 15 is the difference between the rate at which data is being sent from the FPGA and 

the feasible rate specified by the manufacturer. 

Contemplating this matter for some time, various tests were conducted in an attempt 

to elucidate this problem. With exactly identical setup, removing the line in which the 

full flag is tested before proceeding with the program results in a random number of 

packets being received by the PC before the transmission is interrupted altogether. 

This means that at some point in time, the FPGA is required to slow down the rate of 

packet production. Relying on this, the best conceivable explanation for this strange 

phenomenon is the following. As more traffic is being placed on the differential USB 

pair, packets are becoming bursty due external noise sources affecting the PCB trace. 

At some stage, the occurrence of an error in a packet becomes inevitable whereby the 

PC does not acknowledge one reception forcing the USB device into a resend 

operation which conform to why polling on the FIFO flag is needed. The USB device 

handles automatically low-level USB protocol requests such as a resend operation. In 

plain English, although enumeration shows that transmission is taking place in the 

high-speed mode, the actual achieved bitrate is degraded due to noise when trying to 

exceed certain threshold bitrate. Unfortunately, the only way to defend this theory is 

to use a USB protocol analyzer which was not available. A USB protocol analyzer 

shows what is actually happening in the USB transmission. 
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On the PC side, it was observed that the CPU utilization increased dramatically once 

streaming had begun. The processor on which the GUI was run is Intel Mobile 

Centrino®. The Centrino processor is part of a new trend towards having a real 

mobile processor as opposed to a scaled-down version of a regular P4. The Centrino 

processor is characterized by having a dynamic pipeline whose certain stages are shut 

down when the processor is not fully functional. This allows for a maximum 

conservation of power in accordance to the status of the processing load. The 

applications being run concurrently determine the processing load and in turn 

processor utilization. It was observed that once streaming had started, the cooling fan 

of the Centrino started to work immediately indicating more processing load. In 

addition, the CPU’s clock was noticed to be working at its maximum speed. This hints 

that a significant amount of computational load had led to such a reaction from the 

processor, which is in line with the reasoning so far. 

At last, it is worth stressing that the results obtained are with respect to streaming 

applications which are beyond the scope of this project. This effort was carried out in 

an assist to the on going research which aims at streaming an aggregate of 25 

MBytes/sec supplied by 32 acquisition channels. People involved in that project are 

urged to investigate this problem further. As with regard to the project’s aims, 

interfacing a digital tomograph to a PC was fulfilled. 

 

6.4 DSP BOOTING 
 
The ability to boot the DSP from the FPGA had not been an objective set right from 

the beginning of the project. Later on, realizing that the SHARC DSP supports a 

parallel port boot mode, and stemming from a practical need, this feature has been 

added to the system through a software-hardware co-design. At some stages during 

the development of the project, access to the PCI-based JTAG debugger and emulator 

was restricted because of personnel unavailability. This resulted in an interruption in 

the 4-month timetable that compromised the successful completion of the DSP part. 

The idea of programming the DSP from the FPGA seemed to be the solution for 

having no access to the JTAG. In addition, Analog Devices VisualDSP++ IDE has a 

90 days trial version period which is enough for the project’s development time span. 
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VisualDSP++ can generate a boot loader file for either an external SPI memory or a 

parallel EEPROM connected to the parallel port. That is, if the FPGA can emulate an 

8-bit parallel EEPROM, the DSP can be booted from the FPGA upon reset.  

The first problem that was overcome is the following. The DSP rest pushbutton halted 

the generation of the board clock whenever pressed. This means that the FPGA 

received no clock while the duration of reset. After consulting the board’s designer, it 

was feasible to disconnect the reset signal from the clock generation unit. The second 

issue tackled was to do with the boot kernel. At first, the boot loader was parsed as a 

constant 8-bit array of around 4K entries. It took the synthesizer a great deal of time 

every time the design had to be recompiled. Moreover, when the boot method was 

tried, the oscilloscope revealed that at some points entries lost lock with addresses. 

The addresses read from the DSP were substituted by an internal incremental index 

only to yield identical results. What was inferred from the oscilloscope is that after 

around 3K addresses had passed, an entry whose address was supposed to be a 

particular value appeared after four addresses. This meant that there were 

inconsistencies between the entries and the addresses when approaching the end of 

constant array. Realizing that constant arrays are implemented as distributed 

memories, the entry-address inconsistent behavior towards large indices (4K entries) 

is likely to be cased by long-distance cumulative propagation delays. After reasoning 

about the problem, the solution was found in the Xilinx core generator facility. A 4K 

distributed memory ROM was generated. In the software GUI, an option for parsing a 

VisualDSP++ loader file into a Xilinx coefficient file was added. The Xilinx 

coefficient file has a specific format that includes a memory radix and a memory 

content vector. After examining some Xilinx coefficient files generated by 

MATLAB’s filter design HDL coder toolbox, the format was comprehended and 

integrated into the GUI. The content of the 4K distributed ROM was initialized using 

the COE file and the boot operation was tested again. The result was a successful 

booting that was verified using the oscilloscope. Figure 6.5 shows a snapshot of the 

boot process. 
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Figure 6.5: DSP booting snapshot 

 
As a demonstrating example of the working scheme, a simple digital oscillator 

(critically stable biquad IIR filter) was implemented. For information about general 

IIR DSP filter implementations please refer to [47] [48]. Of course, this assembly 

language filter implementation is specific to the underlying ADSP-2126x SHARC 

architecture [20]. Details about the theory of self-sustained digital sinusoidal 

oscillators can be found at [49]. 

The DSP’s timer0 was configured to deliver 8 KHz sampling frequency. Every timer0 

interrupt, the digital oscillator algorithm is called and the parallel port is set up to 

transfer the content of the 32-bit word Sinusoid. For a complete assembly code 

listing please refer to the appropriate appendix. Figure 6.6 shows how transmission is 

initiated every 125 µs. 
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Figure 6.6: Digital oscillator transmission snapshot 

The parallel port transfer operation consists of one ALE  cycle per transaction. This is 

achieved by setting the parallel port external modifier to zero resulting in maximum 

data throughput. Figure 6.7 depicts this transaction whose WR  cycle duration is 88 ns. 

 

Figure 6.7: Parallel port transfer operation 

Determined by the initial conditions of the digital sinusoidal oscillator with the 

sampling rate in mind (8 KHz), a 100 Hz sinusoid was generated. Samples were 
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buffered in the FPGA and were communicated to the PC in demonstration to the 

overall successful implementation. Figure 6.7 shows the waveform received at the PC 

side. 

 

 

Figure 6.7: Digital Sinusoidal Oscillator 

 
Figure 6.7 shows 128 32-bit samples sent over 1024 KB packet. The hex values had to 

be converted first to double type utilizing the hex2decimal method of class 

HexConversion. The quantization step was intentionally kept visible conveying a 

discrete sampled signal. Classically, a low-pass reconstruction filter is applied in the 

analogue domain to smooth out higher frequencies contained in the sharp-edge 

transitions. This can be also done digitally in the DSP or the FPGA or even on the PC 

side. However, since the waveform is merely meant to prove successful platform 

exploitation, there was no need for further processing. 
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6.5 FPGA METRIC ASSESSMENT 
 
Synthesis was performed using Xilinx XST 6.1.03i. The summary of the synthesis 

report is shown in table 6.1. 

Table 6.1: Summary of Main synthesis report with ROM present. 

  
Main  

(with distributed ROM) 

BELS 6047  

FFs/Latches 598  

CLK Buffers 3 37% 
Cell Usage 

IO Buffers 71 50% 

SLICES 2005 55% 

SLICE Flip Flops 598 8% Device Utilization 

4 input LUTs 3580 49% 

 
Then the distributed ROM was commented out and Main was re-synthesized. The 

summary is shown in table 6.2. 

Table 6.2: Summary of Main synthesis report excluding ROM. 

  
Main  

(without distributed ROM) 

BELS 1940  

FFs/Latches 570  

CLK Buffers 3 37% 
Cell Usage 

IO Buffers 71 50% 

SLICES 93 25% 

SLICE Flip Flops 570 7% Device Utilization 

4 input LUTs 1447 20% 

 
 
As with regard to timing summary section of the synthesis report, the maximum 

frequency was not included int the summary presented above for the following reason. 
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Examination of this section showed that the theoretical maximum frequency is 

45.595MHz with a maximum combinational path delay of 10.356ns. Firstly, the 

scenario at which 10.356ns delay takes place was traced back to the source net 

RD_bar_i with destination DB_d<7> through five levels of combinational logic. The 

irrelevant debugging pin was commented out and the design was re-synthesized. 

Again the report showed a maximum combinational path delay of 9.638ns occurring 

between source RD_bar_i and destination AD_io<7> through four levels of logic. Not 

only the destination pin is supposed to meet a certain setup time of 3.3ns (specified 

by the DSP manufacturer), but also RD_bar_i is totally irrelevant to the internal clock 

on which operations are being carried out. In addition, RD  process was intentionally 

implemented in this way in order to allow for the propagation of data after the address 

is read. In other words, this case imposes a restriction on the active duration of RD  

rather than on the internal clock. RD  being an external clock has confused the 

synthesizer in imposing restrictions on the internal clock, or at least the synthesizer 

has presented a fact which is up to the designer how to interpret it. Secondly, still 

these are never precise figures as the design deploys two clocks namely clk and 

clk2x. The low clock figure is likely to be with respect to clk which is already 

operating at 25 MHz due to its relatively high load and other USB-related factors such 

as addressing distributed constant arrays (descriptor and register configuration). This 

means that the DSP process may be able to deploy yet faster clock resulting in more 

time resolution. Thus more exact figures can be obtained from the “place & route” 

report in the form of clock skew and delay. 

 

Since it is obvious that Main without a distributed ROM component presents a more 

faithful reflection of the implemented design, the following tables provide further 

analysis of “map” and “place & route” reports for Main without distributed ROM. 

Table 6.3 provides a summary of major metrics extracted from “Map” and “Place & 

Route” reports. Table 6.4 lists the fanout, skew, and delay associated with both 

clocks. 
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Table 6.3: Summary of “Map” and “Place & Route” reports 

  Main  

SLICES 757 21% 

SLICE Flip Flops/Latches 339 4% 

Total 1,374 19% 

used as logic 1,257  

4 
in

pu
t 

L
U

T
s 

used as route-through 117  

Total 83,768  

Map  

Report 

G
at

e 
co

un
t 

JTAG for IOBs 3,408  

Average Connection Delay 0.991 ns  

Average Connection Delay for 10 
worst nets 3.909 ns  

Place & Route  

Report 
Max pin delay 5.052 ns  

 
 
Table 6.4: Summary of “Generating Clock” section of the “Place & Route” reports 

  Main  

Fanout 150  

Net skew 0.153 ns  

c
l
k
 

Max delay 0.458 ns  

Fanout 49  

Net skew 0.097 ns  

Place & Route  

Report 

c
l
k
2
x
 

Max delay 0.396 ns  

 
Table 6.4 shows that clk has in general larger metrics than that of clk2x.  

The parametric analysis reveals that significant additional computations can be 

performed exploiting more than 75% left free resources. However, it was established 

earlier that free resources are far from being a faithful “linear” assessment of what can 

be further implemented in the FPGA. The overall resources utilization is a 

compromise between timing and density (due to limited routability). Yet the 

availability of dedicated units such as multipliers makes additional DSP computations 

feasible in their abstract sense without taking into account the associated control and 

 79



datapath which have to be implemented using CLBs. Pipleling the datapath can 

improve timing performance. The Xilinx Core Generator can be deployed in 

producing a pipelined multiply-accumulate DSP components. Even control FSMs can 

be improved in terms of timing. The nesting of conditions in a state must be kept 

vertical in one level whenever possible. Insertion of null conditions in the “else” case 

reduces accidental latches although ultimately the implementation of FSM depends on 

the manufacturer template to which the designer must adhere.  

 

6.6 GUI SAMPLE OPERATION 
 
Figures 6.8 and 6.9 shows snapshots of some of the features of the developed GUI. 

 

Figure 6.8: A snapshot of the SoftScope. 

 
A digitally-synthesized sine wave of 100 KHz sampled at 3.125 MHz is displayed in 

figure 6.8. SoftScope comprises various fields emulating the operations of an actual 

oscilloscope. Although all presented fields are properly linked to the 

GlobalVariables corresponding variables, only y-scale and normalization factor are 

activated at the moment. Others are left to be easily included later in the refresh 

method. For instance, the timebase field (x-scale) was left unconnected because it 
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essentially depends on the sampling frequency which is application specific. 

Depending on the sampling frequency, a proper time-increment should be accounted 

for in the refresh operation. A possible generic situation is to send the sampling 

frequency as a header field in each packet. The application can decode this field to 

extract the inverse time-increment. Once the final application parameters are decided 

these fields can be activated in a very straightforward manner. 

 
Figure 6.9: A snapshot of the SpectrAnalyzer. 

 
In response, figure 6.9 shows a single harmonic residing at a normalized frequency of 

0.032 Hz. This corresponds exactly to what is expected as Hz
MHz

KHz 032.0
125.3

100
= . 

This result is obtained with a Blackman windowing function, linear scale, 8x 

frequency scale, and 1024 frequency bins. Only the channel radio buttons are inactive 

at the moment as a single channel is currently in operation.  
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Chapter 7  
 

Conclusions & Future Work 
 
 
 

7.1 CONCLUSIONS 
 
Throughout the time span of the project, a software-hardware platform of a digital 

tomograph with USB PC connectivity was developed. The hybrid architecture is now 

ready for implementing some serious processing tasks. The combination of a well 

coupled fine-grained reconfigurable fabric with a floating-point DSP constitutes a 

skeleton architecture for targeting the high class of the embedded computing 

applications. The FPGA-controlled USB link not only can communicate results to a 

user friendly GUI of multi-functionalities, but can facilitate an in-circuit emulation 

and debugging when used in conjunction with the reconfigurable FPGA. The 

philosophy of having a master FPGA stems from the desire to control both the USB 

device and DSP through the use of synchronized concurrent processes and still at the 

same time offers enough reconfigurable fabric for further customized computations. 

The Spartan-3 has dedicated multiplier blocks enabling the realization of auxiliary 

DSP operations on the reconfigurable fabric necessary for algorithmic control tasks. 

Effectively yielding a system that can be configured and controlled to a large extent 

from within one design environment which was a goal set right from the beginning 

during design study phase. 

The previous acquaintance of JAVA facilitated a rather rapid migration to C# 

effectively shortening software development period. VHDL was investigated 

thoroughly as a means for digital design. The transition between the formally adopted 

schematic-based approaches to advanced VHDL logic design is a major outcome of 

this project. VHDL was used not only as a hardware modelling language but also as a 

simulation tool via VHDL test benches. A methodological hardware-software co-

design approach was demonstrated. Vast exposure to USB protocol is in itself an 

important consequence as USB is expected to be the next predominant solution in the 

embedded systems environment. Practical FPGA issues such as routing impact were 
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interesting to be realized away from their ever present literature treatment. The core 

architecture of the SHARC DSP was studied thoroughly allowing the coding of some 

classical simple DSP problems. Again previous experience with fixed-point DSPs 

accelerated this process.  

However, due to limited time-scale no major novel hardware implementations were 

attempted. The relatively large number of tasks tackled in the project did not allow for 

further investigations and optimizations of some encountered issues such as USB 

endpoint bandwidth in streaming applications (30.72 KBps per endpoint). With 50 

MHz clock, a DSP transfer rate of 22.7272 MBps could be handled successfully with 

almost 5 clock resolution ratio per WR  cycle (88 ns per 16-bit word). By deploying 

faster clock this figure can be easily improved. The unpredictability of hardware 

behaviour consumed all the advancements made in the project timetable.  

Finally, from software programming, hardware design, OS concepts, to artificial 

intelligence, many aspects from computer engineering were deployed into the 

successful realization/reasoning of/about this hardware-software platform with a 

significant element of research. 

 

7.2 PROPOSED FUTURE WORK 
 
Floating-point representation support in the HexConversion class can be added so that 

floating-point formatted words can be communicated from the DSP and decoded on 

the PC side for further packing, visualization, or processing. 

Exception handling management may be investigated later and added to the software 

design. Since the software was developed rather quickly, exception handling was not 

investigated thoroughly. For instance, an out-of-sequence commands might trigger 

some exceptions (null objects) resulting in the collapse of the software session. 

Exception handling is a very straightforward issue that only requires time. Constant 

debugging of the potential causes will eventually yield exception free software. 

Since the skeleton architecture is now ready for serious utilization attempt, it may be 

rational to think about the realization of a relevant embedded computing application. 

In the tomography context, this could be a full or partial reconstruction technique. 

Modelling can be done using VHDL test benches as an input to the FPGA master 
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controller simulating the effects of various system parameters including a DSP 

stimulus. Therefore, the customized control and computing of the reconfigurable 

fabric can be verified in abstraction. Furthermore, the DSP share of the algorithmic 

implementation can be simulated in the VisualDSP++ IDE. Later on, the overall 

performance of the system can be in-circuit debugged and logged (to PC) through the 

use of the FPGA in conjunction with the USB device. However, as convenient as this 

might be, the utilization of this system is associated with a significant learning curve. 

On one hand, VHDL requires a considerable effort and time before being fully 

digested as a digital synthetical and simulating tool. On the other hand, for efficient 

assembly coding, the DSP meticulous architecture has to be fairly researched. The 

SHARC DSP supports a rather advance comprehensive instruction set that reflects its 

architecture faithfully. As an example, for efficient coding, instructions such as 

delayed branch have to be exploited whenever possible in order to optimize the use of 

the pipeline. As DSP algorithms are centred around iterative loops, coding 

enhancements as little as a delayed branch instead of ordinary branch are not to be 

taken slightly in highly demanding processing applications such as the reconstruction 

problem. An improvement of 0.002% in a given function which is called 10K 

times/sec yields a 20% system improvement. Various issues such as stack current 

context save and retrieve are of intimate relation to the underlying architecture. 

Another example can be the challenging issue of inter-process synchronization whose 

solution is described in the “Dining Philosophers” problem in one of its forms. These 

are directly imported from the OS literature. A DSP is essentially an embedded 

processor which means that if one were to exploit its processing power, classical OS 

solutions remain perfectly applicable and just scaled down to an embedded 

environment (processes are relevant to the context of operation rather than generic). 

Thus it is of no surprise that tackling embedded OS problems is inevitable when 

programming in assembly or even higher level languages such as C which still 

requires awareness of such issues before deploying a readily-supplied solutions. 

Therefore, in order to produce significant results, future projects should account for 

the significant learning curve associated with the system not to mention the theoretical 

background of the intended application itself. With these considerations in mind, a 

minimum of fully dedicated MPhil students are likely to meet these requirements 

more than MSc students. 
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The USB PCB high-speed design considerations were not part of the project tasks. As 

it was concluded that noise might be a contributing factor to the poor USB endpoint 

bandwidth performance, future investigations of the PCB recommended 

considerations and shielding are worth the effort. The availability of USB protocol 

analyzer in USB2.0 projects gives more insight to the various protocol operations 

such as bit stuffing or handshaking packets. Thus shortening development cycle and 

reducing speculative blind effort. Further examination of the OS considerations with 

respect to USB streaming application will aid in explaining the unexpected behaviour 

of the isochronous transfer type. 

Support for a set of requests through the bidirectional endpoint 0 can be added to 

contribute in the versatility of the overall system. Nevertheless, such tasks require 

considerable research in the USB protocol. 

Replace the dip switch that controls the boot sequence of the DSP with a digitally-

controlled one to be used by the FPGA as to in-circuit reprogram the DSP without the 

need for explicit intervention from the user. The DSP reset switch also is to be 

replaced by an FPGA pin. Because of the relatively long initialization duration of 

SRAM-based FPGAs, all on-board chip initializations should proceed that of the 

FPGA. Thus allowing the FPGA to reset all the on-board chips is a more coherent 

design practice. 

Having such large distributed ROM present in the FPGA might compromise the 

further sustainable computational tasks. Physically, RAM blocks within the FPGA 

exist as 18Kbit configurable entities. This particular Spartan-3 has 16 RAM blocks 

present over two columns. If a sufficient number of blocks were linked together, a 

fairly large RAM space becomes addressable. Then pointers can be used to refer to a 

starting address in this RAM space. From the PC side, the DSP loader file can be sent 

over say four packets and buffered in the available RAM space alleviating the need 

for a ROM block. Later on, the same space can be used for other purposes and 

different processes can share a multiplexed RAM space. 
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APPENDICES 
 
 

A. VHDL Code 
 

A.1 Main.vhd 
A.2 bus_driver.vhd 
A.3 DSP_Driver.vhd 
A.4 synchronizer.vhd 
A.5 RAM_Buffer.vhd 
A.6 SX2_Utilities.vhd 

 
B. SHARC Assembly Code 

 
B.1 main.asm 
B.2 _initAlgorithm.asm 
B.3 _init_timer0.asm 
B.4 _algorithm.asm 
B.5 PP_CON.asm 
B.6 tmr0_isr.asm 

 
C. C# Code 

 
C.1 Acquisition.cs 
C.2 Complex.cs 
C.3 DefaultInterface.cs 
C.4 FFT.cs 
C.5 GlobalVariables.cs 
C.6 Hex2Dec_Converter.cs 
C.7 HexConversion.cs 
C.8 RandomAccessBurst.cs 
C.9 SoftScope.cs 
C.10 SpectrumAnalyzer.cs 
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B. SHARC Assembly Code 
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