

An FPGA-DSP Digital Tomograph with
USB Connectivity

A dissertation submitted to The University of Manchester for the

degree of Master of Science in Electronic Instrumentation Systems

in the Faculty of Engineering and Physical Sciences

2005

Mohammed Al-Loulah

Supervisor: Dr. Krikor Ozanyan

School of Electrical and Electronic Engineering

Content
CONTENT .. 2
LIST OF FIGURES.. 4
LIST OF TABLES.. 5
ABSTRACT .. 6
DECLARATION .. 7
COPYRIGHT STATEMENT ... 8
ACKNOWLEDGEMENTS ... 9
CHAPTER 1 ... 10
INTRODUCTION .. 10

1.1 PHILOSOPHY .. 10
1.2 TOMOGRAPHY & COMPUTATION ... 11
1.3 PROJECT ENVIRONMENT .. 12
1.4 BRIEF OVERVIEW, AIMS & OBJECTIVES.. 13

CHAPTER 2 ... 15
DESIGN MOTIVATION... 15

2.1 THE DIGITAL CONFIGURABLE CHOICE ... 15
2.2 THE HYBRID ARCHITECTURE .. 16
2.3 USB SUPPORT... 17

CHAPTER 3 ... 19
DETAILED SOFTWARE DESIGN ... 19

3.1 INTRODUCTION... 19
3.2 MATHEMATICAL & NUMERICAL REPRESENTATIONS... 19

3.2.1 HexConversion class: ... 19
3.2.2 Complex structure: ... 22
3.2.3 FFT class:... 23

3.3 USB-RELATED IMPLEMENTATIONS ... 24
3.3.1 RandomAccessBurst class: ... 24
3.3.2 Acquisition class:.. 25
3.3.3 Low-level USB functions: ... 25

3.4 VISUALIZATION .. 26
3.5 OPERATING SYSTEM CONCEPTS... 27

3.5.1 Theoretical background - Multithreading: ... 27
3.5.2 Mutual exclusion solution adopted:.. 29
3.5.3 Plot refreshing mechanism:.. 31

CHAPTER 4 ... 34
DETAILED DIGITAL HARDWARE DESIGN.. 34

4.1 INTRODUCTION... 34
4.2 HARDWARE CONCURRENCY ... 34

4.2.1 Identifying the problem... 34
4.2.2 Proposed solution ... 35

4.3 INTER-PROCESS SYNCHRONIZATION.. 38
4.4 VHDL CODE MODULAR ARCHITECTURE .. 41

 2

4.4.1 A closer look at SX2_Utilities package... 42
CHAPTER 5 ... 47
DSP-RELATED DIGITAL HARDWARE DESIGN .. 47

5.1 DSP INTERFACE... 47
5.1.1 Introduction .. 47
5.1.2 Parallel port description... 49
5.1.3 DSP_Driver module ... 50

5.2 SYNCHRONIZATION MECHANISM.. 53
5.3 DSP BUFFERING SCHEME.. 55

CHAPTER 6 ... 57
EXPERIMENTAL RESULTS & ANALYSIS... 57

6.1 MISCELLANEOUS HARDWARE DESIGN CONSIDERATIONS 57
6.2 FPGA INTERNAL LOGIC ROUTING .. 58

6.2.1 Problem encountered & solution.. 58
6.2.2 Analysis... 59

6.3 USB2.0 ENDPOINT BANDWIDTH .. 65
6.3.1 Streaming through isochronous endpoint... 65
6.3.2 Streaming through bulk endpoint ... 68

6.4 DSP BOOTING... 72
6.5 FPGA METRIC ASSESSMENT... 77
6.6 GUI SAMPLE OPERATION.. 80

CHAPTER 7 ... 82
CONCLUSIONS & FUTURE WORK ... 82

7.1 CONCLUSIONS... 82
7.2 PROPOSED FUTURE WORK ... 83

 3

List of Figures

Figure 1.1: Overall System in logical block diagram representation................................ 14
Figure 3.1: 32-bit fixed-point signed integer [20] .. 20
Figure 3.2: 32-bit fixed-point signed fractional [20] .. 20
Figure 3.3: Density distribution plot... 27
Figure 3.4: Threads & Processes [24]... 28
Figure 3.5: Host software source tree ... 33
Figure 4.1: Abstract solution for hardware mutual exclusion... 35
Figure 4.2: Double buffering scheme ... 37
Figure 4.3: Inter-process synchronization illustration chart ... 40
Figure 4.4: sx2WriteRegAsync state machine... 44
Figure 4.5: Design module view... 46
Figure 5.1: Parallel port block diagram [28]... 50
Figure 5.2: 16-bit write ... 52
Figure 5.3: 8-bit read cycle ... 53
Figure 5.4: DSP buffering scheme.. 56
Figure 6.1: SRAM-based pass transistors... 60
Figure 6.2: Symmetrical FPGA Architecture ... 61
Figure 6.3: Limited Routability [35]... 61
Figure 6.4: A routing example [35] .. 62
Figure 6.5: DSP booting snapshot .. 74
Figure 6.6: Digital oscillator transmission snapshot... 75
Figure 6.7: Parallel port transfer operation ... 75
Figure 6.7: Digital Sinusoidal Oscillator .. 76
Figure 6.8: A snapshot of the SoftScope. .. 80
Figure 6.9: A snapshot of the SpectrAnalyzer. .. 81

 4

List of Tables

Table 4.1: Select signal truth table.. 37
Table 5.1: dsp_sel operations.. 56
Table 6.1: Summary of Main synthesis report with ROM present. 77
Table 6.2: Summary of Main synthesis report excluding ROM....................................... 77
Table 6.3: Summary of “Map” and “Place & Route” reports... 79
Table 6.4: Summary of “Generating Clock” section of the “Place & Route” reports 79

 5

Abstract

Tomography allows the imaging of an inaccessible cross-section for a given object by

means of non-intrusive measurements taken at the periphery. Due to its ill-posed inverse

nature, tomography is a highly demanding processing task.

Field Programmable Gate Arrays FPGAs are emerging not only as effective glue-logic

solutions but also as attractive reconfigurable computing devices for hardware-dedicated

embedded applications. However, despite their versatility, generic FPGAs tend to have

limitations with respect to logic demanding implementations and routing. Coupled with

powerful floating-point DSP in a co-processor fashion, an FPGA-DSP hybrid platform

with USB interface is a suitable candidate for tomographic applications.

The Xilinx Spartan-3 90nm technology FPGA interfaces with the on-board SX2 USB

device and the ADSP-21262 SHARC floating-point DSP as a true master controller. A

logical peer-to-peer communication occurs between the FPGA and a multi-functionality

GUI running on the host PC. The concurrent aspect of the design allows for maximum

parallelism.

Throughout the 4-month project span, a software-hardware co-design was conducted

resulting in the hybrid platform being made ready for a further relevant algorithmic

exploitation.

 6

Declaration

I declare that no portion of the work referred to in the dissertation has been submitted in

support of an application for another degree or qualification of this or any other

university or other institute of learning.

 7

Copyright Statement

(1) Copyright in text of this dissertation rests with the author. Copies (by any

process) either in full, or of extracts, may be made only in accordance with

instructions given by the author. Details may be obtained from the appropriate

Graduate Office. This page must form part of any such copies made. Further

copies (by any process) of copies made in accordance with such instructions

may not be made without the permission (in writing) of the author.

(2) The ownership of any intellectual property rights which may be described in

this dissertation is vested in the University of Manchester, subject to any prior

agreement to the contrary, and may not be made available for use by third

parties without the written permission of the University, which will prescribe

the terms and conditions of any such agreement.

(3) Further information on the conditions under which disclosures and

exploitation may take place is available from the Head of the School of

Electrical and Electronic Engineering.

Acknowledgements

Above all, I would like to thank my mother, may peace be upon her soul, for always

believing in me. Her unwavering belief and devotion have always been an inspiration

for the family.

I would like to express my gratitude to Dr. Krikor Ozanyan for his constant guidance

throughout the project. Also I would like to thank Dr. Yang for the support that he

provided throughout this year.

I would like to acknowledge the cooperation and help of Mr. Sergio Garcia-Castillo.

Sergio provided me with the top-most board of his hierarchical multi-channel system.

Finally, I would like to thank all the staff and students at the school of EEE.

 9

Chapter 1

Introduction

1.1 PHILOSOPHY

Ever since the concept of intelligent computing was introduced even before the advent

of the transistor towards the middle of the twentieth century, people have always been

able to come up with applications to defy what is realistic at the moment

conceptualizing and defining a yet-to-come technology. It is commonly believed that

technology steers evolution. This may or may not be true, but what is beyond doubt is

that sometimes evolution demands that technology be made available. Back to our

context, one of the driving forces in electronics industry is the industrial imaging

problem commonly referred to as Tomography. Tomography essentially allows to

view the internal composition and structure of an object by means of invasive non-

intrusive measurements taken at the periphery of the object [1].

In its abstract mathematical sense, tomography was envisioned early in the nineteenth

century [2] even long before von Neumann* conceptualized his Instruction Set

Architecture (ISA) for modern microprocessors which was named after him later in

tribute. Then it was not until 1917 that tomography has been officially declared a

possibility when Radon† generalized the concept to include objects of arbitrary shape.

In this context, if we let the revolutionary digital processing means to be our

technology, and we let tomography to be our evolution. Have we not waited for the

availability of technology to evolve? Or has evolution spawned technology as a

natural consequence to demand. One might argue quite strongly in support to either

side. However, what is inarguably evident is that at some point in time, the world’s

collective reason or world spirit (according to Hegelian philosophy) is gradually

escalating throughout history towards becoming more aware of its reason (the reason

* Neumann, John von (1903–1957), Hungarian-born U.S. mathematician. He developed game theory
and quantum mechanics, and was a pioneer in computer theory and design.*
† Radon, Johann (1887-1956), Austrian mathematician. He demonstrated that any N-dimensional
object can be “reconstructed” from an infinite number of (N-1)-dimensional “projections”.

 10

within) manifested in our context as the world’s physical laws which govern the

universe we live in. Becoming itself is the act of synthesizing being and coming. With

being refers to the capacity to develop and coming refers to the realization and

fulfilment of the potential [3].

1.2 TOMOGRAPHY & COMPUTATION

In tomography, the reconstruction of an object whose parameters are being

interrogated with a certain sensing modality involves solving an inverse problem [4].

Fundamentally, the inverse problem is the act of regaining the true characteristics of

an object from a measured set of data obtained after the interrogation of those

characteristics through the use of a particular modality (attenuation in x-ray,

permittivity in capacitance) [5]. The inverse problem can be traced back to physics

whereby experimental results are fitted to a theoretical ideal model [4]. Due to its ill-

posed nature, the complexity of the system of equations through which fitting is being

performed is a function of the number of measurements and the desired precision.

Thus intuitively as it may seem, the imaging of an inaccessible cross-section for a

given composite of substances (typically found in process tomography) requires a

considerable number of quantifying measurements for it to be of significance in the

industrial environment (yielding acceptable resolution). The reason is that all

tomographic modalities involve coupling and ill-conditioning [6]. Firstly, coupling

refers to the fact that the contributions of many voxels on which a modality is being

applied affect each single measurement. Therefore, for each frame a set of equations

modelling the system’s behaviour need to be evaluated with probably dynamically

changing characteristics both in time (time variance vs. time invariance) and in space

(shift variance vs. shift invariance). Secondly, ill-conditioning stems from the fact that

images are very susceptible to noise unless a priori information exist. Therefore,

numerical computation lies at the essence of tomography as both coupling and ill-

conditioning are ever present in all tomographic modalities. As a result, an extra

processing overhead is ultimately superimposed on top of a rather naïve

“transcendental” reconstruction technique to accommodate for the above factors due

to the cruelty of the physical world.

 11

Often the coupling effect, or conversely the non-local effect of measurements is far

more severe in lower frequency modalities. Meaning x-ray tomography measurements

are very much local compared to other low-frequency modalities such as optical

tomography. However, the high cost of nuclear modalities makes them unjustifiable in

some cases of process tomography not to mention other contributing factors such as

the difficulty and high cost of the associated maintenance.

1.3 PROJECT ENVIRONMENT

An ongoing project in the group of Sensors, Imaging and Signal Processing (SISP) at

the school of Electrical and Electronic Engineering (EEE) is the design of a low-cost

general architecture for digital tomography systems. The idea is to develop a

hierarchical architecture of cascadable nodes responsible for the acquisition and

processing of highly demanding tomographic data corresponding to measurement

channels. Ultimately the system should be able to perform fully or partially onboard

intensive computations, e.g. tomographic image reconstruction and then to pass the

resulting stream of data to a computer for finalization, display, and storage.

The system design is centred around a very simple yet so powerful concept;

reconfigurability. Tomographic image reconstruction systems are characterized by

being highly specialized. Targeting a specific imaging technique, systems developed

so far have proven to be difficult to be migrated from in order to facilitate other

tomography systems utilizing the same platform. Resulting in little hardware

reusability once the design is fully implemented.

Addressing this problem alongside the need to shorten development time, the system

currently being designed aims at implementing a generalized architecture that can be

tailored in terms of logic resources and expanded in terms of hierarchy as to suit a

wider spectrum of tomographic modalities. Down at the bottom of the pyramid, nodes

with intimate dependency on the underlying tomographic technique can be replaced

altogether in worst case scenario without having a propagating effect up towards the

top of the pyramid where all channels converge to a single node. This node performs

the last processing tasks and/or packing before communicating the final bit stream to a

host PC.

 12

1.4 BRIEF OVERVIEW, AIMS & OBJECTIVES

The aim of this project is to utilize a hybrid architecture consisting of a Field

Programmable Gate Array (FPGA) and a Digital Signal Processor (DSP) as its

primary digital processing elements to implement a Universal Serial Bus (USB)

interface to a host PC. The accomplishment of the proposed task dictates a rather

extensive deployment of different programming languages through their underlying

environments. The meticulous nature of project is a byproduct of the number of tasks

associated with its successfulness. A detailed study of the general theory of USB is

crucial for choosing a suitable USB2.0 device that can be integrated in the board

architecture in a seamless manner. This was carried out from the very beginning and

before commencing the actual project. Then VHDL as a means for synthesizing a

synchronous core on the FPGA was investigated thoroughly. The VHDL code is the

essence of the overall system as it is the true remote master which controls and

synchronizes operations driven and initiated by an end user on the host PC. The

VHDL core is designed to meet logical requirements in a Finite State Machine (FSM)

manner as well as complex timing specifications as handshake and glue logic. Key

issues tackled in VHDL range from logic design to inter-process synchronization.

Further, C# programming language is used to implement a software interface which

comprises in addition to its Graphical User Interface (GUI) classes to handle tasks

including acquisition, file processing, multithreading, waveform plotting, mutual

exclusion, complex numbers representation, decimal to two’s complement conversion

and vice versa, and FFT computation for assessing the spectral components of the

signal being acquired. C# was adopted bearing in mind that manufacturers supply a

free C++ Dynamic Link Library (DLL) which can be integrated into the C# code

exploiting the interoperability feature of the .NET environment. Finally, an interface

to a powerful onboard floating-point DSP equips the system with the capability to

reload the DSP’s firmware from the FPGA without using its expensive dedicated PCI-

based JTAG debugger and emulator. This is achieved by deploying the bootstrap

feature of the DSP through its parallel port.

 13

The overall system is depicted below:

Figure 1.1: Overall System in logical block diagram representation

The roadmap to the successful completion of the project involves:

 Phase 0: USB specifications review, components choice, and identifying

various system design requirements.

 Phase 1: extensive VHDL literature review, and migration from JAVA to C#.

 Phase 2: interfacing the FPGA to the USB device by implementing all

necessary procedures whether for enumeration, configuration, or bidirectional

data transfer.

 Phase 3: designing and implementing the PC-side GUI with all necessary

functionalities as to control, format, display, and store the acquired data.

 Phase 4: reviewing the DSP specific architecture, implementing

communication between the FPGA and DSP, and demonstrating the overall

working scheme.

Phase zero was carried out during the design study module. Starting in April, the

actual project realization began with phase one.

 14

Chapter 2

Design Motivation

2.1 THE DIGITAL CONFIGURABLE CHOICE

It was discussed earlier that tomography is a demanding processing task. Yet the

question that needs addressing is to decide on how and where to discharge the

required computational load. Following on the recent breakthroughs in the

contemporary state-of-the-art technologies, an ideal approach would be to employ a

top-of-a-line nano system towards fabricating a dedicated system-on-chip which

encapsulates in its dense customized resources all necessary processing yielding

optimal performance in terms of mass, power consumption, and speed. However, in

reality, important factors such as time-to-market, design complexity, and cost tend to

influence people’s adoption for a particular methodology.

Starting at the top of the hierarchy in its broadest sense, signal processing can be

performed either in the analogue domain or in the digital domain. Although all

tomographic modalities have their signals originating in the analogue domain,

restricting analogue operation to preconditioning and other preliminary tasks can

result in both prior and posterior advantages. Firstly, utilizing digital circuitry is more

cost effective; digital signals are more immune to noise fluctuation alleviating the

need for strong Electro-Magnetic Compatibility (EMC) inwards radiational shielding

compared against full custom analogue circuitry. Secondly, digital solutions are

highly reconfigurable due to their reprogrammability; in addition, they offer an

unmatched versatility due to their in-circuit functional selectivity support.

Furthermore, stand-alone digital design can be easily integrated and expanded into

other systems.

Descending down the hierarchy, Application Specific Integrated Circuits (ASICs) are

emerging as strong solution that is being adopted widely in industry. They are

characterized by unmatched performance especially with respect to power

 15

consumption and EMC performance. However, unless mass-produced, ASICs’ cost

can be quite unsustainable due to their extremely high prototyping cost.

2.2 THE HYBRID ARCHITECTURE

Reaching the purely digital layer in hardware design hierarchy, Digital Signal

Processors (DSPs) are fully customized chips that are designed to perform DSP-

related operations in the fastest and most efficient manner and most notably

concurrently whenever possible. From barrel shifters to bit-reverse addressing modes,

DSPs have all possible resources to implement a wide variety of processing

operations. Nevertheless, since the architecture is preconfigured, the designer can not

do much apart from customizing his / her firmware. In other words, DSPs have

inherent limitations due to their instruction set architecture (ISA) giving rise to

memory and instruction bottlenecks [7]. DSPs deliver their optimal speed

performance when their pipelines are fully utilized resulting in the highest possible

instruction throughput. Thus in fast streaming systems, such as the processing of

tomographic data, responding to outside events compromises the effective processing

instructions being executed and in turn limits the complexity for which the system can

accommodate. Furthermore, DSPs suffer from relatively high power dissipation rates

and often require extensive glue logic to interface with the rest of the system [8]. In

general, DSPs have less versatility with respect to their peripheral capabilities when

compared to regular microcontrollers. This is quite logical because DSPs targets data

processing rather than controlling events. In ISA architecture the device utilizes the

instruction path to execute one task at a time which results in tasks being scheduled

for execution in a sequential fashion. Recently a new class of embedded solutions has

emerged in an attempt to accommodate for broader applications. Named Digital

Signal Controller (DSC), manufacturers (such as Microchip®) aims at offering low

performance DSPs (typically 30 MIPS) with enhanced peripherals support such as

Pulse Width Modulation (PWM) core for motor control applications [9].

On the other hand, FPGAs are much efficient in terms of power dissipation and are

highly generic and reconfigurable in their architecture as they can be tailored to suit a

particular application independently of the underlying silicon platform as opposed to

ASICs [10]. Being able to support the industry’s highest speed serial bit stream LVDS

 16

[11], typically > 500 MHz, FPGAs are amongst few comprehensive configurable

solutions available for developers to do so. In fact, FPGAs have been long adopted as

the prominent solution for implementing glue logic, but have been just recently

looked at as an effective DSP solution due to their ever increasing speed and logic

density [7]. However, the caveat is that complex designs can be very demanding in

terms of available resources. Moreover, designs could easily grow unmanageable up

to the point when third-party Intellectual Property IP cores become inevitably

necessary introducing additional cost. Otherwise, designers can find themselves

reinventing the wheel in every single project, and possibly in every single task within

a project. Whereas when buying an established DSP from a certain manufacturer, one

will be charged neither for the effort nor for the research put into designing and

implementing the product simply because of the mass-production aspect associated

with it.

Real-life experience has shown that a hybrid scheme utilizing both solutions in a

complementary fashion is highly desirable to strike a balance between the merits and

disadvantages of both technologies. The result is rapid hardware reconfigurability for

a wide range of applications [12-16]

2.3 USB SUPPORT

USB is emerging as the industry’s unified standard since its introduction in 1998.

Increasing number of peripherals across different platforms is adopting USB to

support a host-device connectivity. This has led to a quick embrace of USB by many

manufactures [17] in the quest to satisfy the huge demand due to its powerful features

which include: auto detection and configuration, easy expansion using hubs,

reliability, and low cost. Recently USB standard was enhanced to include ‘On-The-

Go’ (OTG) functionality [18] enabling point-to-point data exchange between remote

products which added even more popularity. Now the wireless USB standard is being

finalized [19] with predictions that it will soon replace Bluetooth. USB2.0 High-speed

delivers a theoretical bitrate of 480 Megabits/second which makes it a suitable

candidate for the project’s PC interfacing aspect as it is roughly estimated that the

aggregate data stream generated by the overall system hierarchy would be around 25

 17

Mega-Byte per second. In addition, its endpoint-based modular protocol facilitates a

straightforward communication scheme defined on top of USB.

 18

Chapter 3

Detailed Software Design

3.1 INTRODUCTION

In this chapter, a detailed treatment of the system’s software architecture is presented.

Rather than addressing all the theory of the software design which is beyond the scope

of this report, the following discussion will attempt to explain important system-

specific issues associated with the software. These issues are grouped according to

their logical nature as follows: mathematical & numerical representations, USB-

related considerations, plotting and visualization, all the way up to Operating System

(OS) concepts. Selections of C# code will be listed whenever necessary to facilitate

the discussion. However, for full code listing please refer to appendix C at the end of

the report.

3.2 MATHEMATICAL & NUMERICAL REPRESENTATIONS

3.2.1 HexConversion class:

Starting in a strictly mathematical fashion, it was imperative that the system be able to

translate the numeric format supplied by both the FPGA and the DSP. Whether

integer or fractional, the FPGA and the DSP use a signed two’s complement notation.

In response, a class named HexConversion was developed to handle the task of

converting data from hexadecimal to double and vice versa. The double type is the

one used by the Math class in C# so it is logical to convert everything into double as it

is most likely that the acquired samples will be subjected to further mathematical

processing whether for visualization or for packing in matrices. The following

paragraph will explain the fixed-point signed fractional and signed integer numeric

notations before proceeding with the actual class implementation.

 19

Consider a 32-bit fixed-point format. This format can denote a signed integer or

signed fractional number as shown in figures 3.1 and 3.2.

Figure 3.1: 32-bit fixed-point signed integer [20]

Figure 3.2: 32-bit fixed-point signed fractional [20]

These representations can be generalized to any number of bits n.

As illustrated in the figures, a signed integer format of n-bits can accommodate for a

span of values inclusive. One the other hand, a signed fractional

number of n-bits can represents faithfully numbers ranging from -1 to almost +1.

]12,2[11 −+− −− nn

As widely perceived, in high level programming languages such as C#, it is not

possible to perform low-level logical operations such as shift and concatenate. This is

partially true as it is possible to perform shifting on the byte type in C#. However, the

result is automatically parsed into an int type which renders it unusable for further

binary-level operations. In order to go around this problem, the string type is used as

an intermediate type to which all numeric conversions will be parsed. This makes the

conversion an easy and straightforward matter as all types in C# have a default

method ToString() associated with them that facilitates this operation with zero

overhead.

 20

The HexConversion class consists of six static methods. Static methods are used to

guarantee that no objects of the class are allowed to be instantiated. This ensures that

modifications introduced to an object will affect the original object and not another

replica in the memory. The six static methods are:

 hexDigits : returns a hex character in correspondence to a hex nybble

passed in an integer argument.

 ToHexString : returns the hex string equivalent of an array of bytes. This

method makes use of hexDigits and C# built-in binary manipulation

operators; >> and &.

 decimal2hex : converts a decimal fixed-point fractional number val to its

hex representation over n-bits by implementing the following equation:

() ()12&22 1 −×+ − nnn valFloor . If val is positive, the first left hand side of

the equation will overflow yielding zero in the sign bit. “Anding” the result

with ones discards bits beyond the nth digit. If val is negative, a weighted full

resolution range will be subtracted from (effectively two’s complementing

val) yielding a one in the sign bit to indicate a negative number. Flooring the

first stage of the equation gets rid of unwanted fractions in case the resultant

value is not a whole number.

n2

 int2hex : converts a signed integer to its signed hex representation over n-

bits.

 lookupHex : returns the equivalent integer value of a passed hex character

wrapped in double format in order to minimize further explicit parsing.

 hex2integer : returns an integer equivalent of the passed two’s complement

hexadecimal number. It is easier to comment on the actual code for this

function rather than explaining it in words.

Listing 3.1

public static int hex2integer (string input, int n)
{

int i, val;
double j=0;
for (i=0; i<input.Length; i++)

j += (double)Math.Pow(16, input.Length-1-i)*lookupHex(input[i]);

if (j >= Math.Pow(2,n-1))
val = -(int)(Math.Pow(2,n) - j);

 21

else
val = (int)j;

return val;

}

The “for” loop simply decodes the hex number packed in the string input to its

numerical equivalent. Then if the result is found to be greater than the

maximum positive representable number, the result is complemented with

respect to n-bits and negated.

 hex2decimal : returns the fractional decimal representation of the passed hex

parameter. It is implemented exactly in the same way as hex2integer except

that the resultant value needs to be normalized first as follows:

Listing 3.2

if (j >= Math.Pow(2,n-1))
val = -(Math.Pow(2,n) - j)/Math.Pow(2,n-1);

else
val = j/Math.Pow(2,n-1);

return val;

A typical utilization of this class within the programme is presented bellow:

Listing 3.3

double[] dbuffer = new double[buffer.Length/2];
for (int j=0; j < buffer.Length; j+=2)
{

// Reference Operation :
//dbuffer[j/2] = buffer[j] + buffer[j+1]*Math.Pow(2,8);
byte[] intermediate = new byte[2];
intermediate[0] = buffer[j+1];
intermediate[1] = buffer[j];

dbuffer[j/2] = HexConversion.hex2integer(

HexConversion.ToHexString(intermediate),
16
);

}

The code shows how a signed two’s complement sample present over two consecutive

bytes can be converted to its integer number representation and stored in a double

buffer location for further visualization at a later stage.

3.2.2 Complex structure:

 22

One of the functionalities that the software offers is a real-time FFT computation for

the incoming stream of samples. In order to perform FFT, first a complex structure

was defined to realize complex numbers representation. It is worth pointing out that

Complex is defined as a structure rather than class in order to avoid the overhead

associated with calling a constructor for every single class allocation in an N point

complex array when computing FFT recursively which might result in a slight

degradation in the overall software performance. The implementation of the complex

structure is straightforward. It consists of three public methods; Complex, conjugate,

ToString. The latter overrides the default .NET ToString method. In addition, the

structure overloads basic arithmetic operators such as +, -, and * for scalars and

complex numbers.

3.2.3 FFT class:

A real-time FFT computation is performed on the host PC. It provides a means to

assess the frequency content of the incoming signal. It runs on a different thread than

the mainstream thread in a multithreaded application. The multithreaded nature of the

software will be discussed in details later alongside some other OS concepts deployed

in the software’s architecture.

The class FFT_Trans, consists of three static methods fft, ifft, and convolve.

Firstly, the fft method computes the FFT of the complex array X[], assuming its

length is a power of 2 based on a recursive implementation of the radix 2 Cooley-

Tukey FFT algorithm [21]. The recursive approach of the Cooley-Tukey FFT is very

simple to code indeed as one neither has to keep track of the separation of constituent

points of the butterfly in a given stage nor the separation of points having the same

weighting factor within a given stage . However, the caveat is that an FFT recursive

algorithm is more demanding in terms of memory resources. For example, a 1024

point FFT will require 10 recursions, one per butterfly stage, to yield the final result.

(Had this been the case fifteen years earlier, one would have worried about this being

inefficient way to implement FFT. Nevertheless, modern computers as so powerful

that we no longer care much about efficiency and even tend to trade it for simplicity.)

What is crucial is that while regression is in progress, a termination case has to ensure

that the final recursive call converges to a value upon which all remaining calls

wb

fb

 23

depend for them to evaluate and present a valid value to the parent call. In this case,

the base condition is when the number of points is equal to one which corresponds to

y being equal to x. Generally, the even and odd components of the DFT will be

extracted whereby an FFT transform for each is called so that at a later stage they will

be used with the proper weighting factor to reconstruct the final result.

Secondly, the ifft computes the inverse FFT of the complex vector X[]. Implicitly

it calls the fft method. The only additional caution is that the complex array is

conjugated both before and after the direct FFT call to account for the positive sign in

the IDFT formula. Also the returned array Y[] is divided by the total number of

points.

Finally, method convolve computes the convolution of two complex time-domain

vectors x and y based on Fast Linear Convolution [22]. The two vectors are taken to

the frequency domain where they are multiplied and the result is inverse-transformed

to the time domain again.

3.3 USB-RELATED IMPLEMENTATIONS

In this category, various classes and aspects associated with USB are presented. The

following discussion comprises two classes namely RandomAccessBurst and

Acquisition in addition to low-level USB driver functions.

3.3.1 RandomAccessBurst class:

To start with, a class named RandomAccessBurst was implemented which maintains

operations related to a USB-packet. In the Object Oriented Programming (OOP)

philosophy, programmers are encouraged to wrap objects of the same level of

abstraction or category into a separate class. Hence RandomAccessBurst class

encapsulates all packet-related entities in one object that is easily and securely

maintained through its properties and methods. In addition to some private data

members, the class has two public data members as far as the functionality of the class

is addressed, burst which is a double array of fixed size (here 512) to hold a packet,

and index_of_burst which is an int type to keep track of the received packet’s

index. Moreover, the class utilizes a property BurstIndex to set and get the private

 24

index_of_burst variable, and two public methods SetBurst and GetBurst to set

and get the private burst array.

3.3.2 Acquisition class:

This class builds on top of the RandomAccessBurst class to provide file-processing

services necessary for storing and retrieving RandomAccessBurst objects to/from

files by means of internal private binary reader and writer data members. Public

methods include: OpenFile which create/open file containing empty records,

GetBurst which retrieve a RandomAccessBurst depending on its index, and

AddBurst which add a burst to file at position determined by a parameter signifying

burst number.

Typical working scenario that illustrates the usage of the above two classes is

presented in listing 3.4:

Listing 3.4

acquisitionProxy = new Acquisition();
acquisitionProxy.OpenFile(fileName);
.
.
.
int newBurstIndex = Var.USB_Packet.BurstIndex + 1;
RandomAccessBurst bPacket = new RandomAccessBurst(newBurstIndex, dbuffer);
acquisitionProxy.AddBurst(bPacket, newBurstIndex);

3.3.3 Low-level USB functions:

The .NET framework does not provide implementations to support low-level I/O

operations. Moreover, literature on this subject is extremely hard to find as Windows

Operating System in its essence is not an open source OS as opposed to other

operating systems such as Linux and UNIX. As a result, it is almost always the case

that one can never find an open source implementations in support to Windows OS.

This makes the development of windows applications with intimate relation to the

hardware layer on which the OS operates be restricted and monopolized by big

corporations rather than individuals.

Initially the plan with regards to the USB windows driver was to marshal the

unmanaged C++ static library, which is freely available from Cypress, into the

managed world to allow .NET applications to use the C++ DLL. Relying on my

 25

computer engineering background, the risk of digging deep in such specific

programming task seemed to be feasible at the time. After investing a great deal of

time in an attempt to produce a wrapper code for marshalling the unmanaged DLL, it

turned out that the task requires more than just a computer engineer. In fact a solid

software engineering background coupled with dedication and time is inarguably

needed especially that the task dictates a specialized expertise in .NET framework

rather than general programming skills.

Choosing not to compromise other tasks in the project which are more relevant to the

project’s environment, a third party software was used to generate the Windows USB

driver plus the low-level DLL file to interface with the USB device. After some

experimentation, the DLL was easily incorporated in the software resulting in a

dynamically adjustable USB driver which was crucial for investigating various USB

transfer types as to suit the nature of application.

3.4 VISUALIZATION

The signal being acquired through USB is required to be plotted both in time domain

and frequency domain after the application of FFT. To achieve this task, two classes

were implemented; SoftScope and SpectrumAnalyzer. They provide the user with

the ability to perform various tasks such as controlling the x-y axes scale,

normalization factor, offset etc emulating the real operations of an oscilloscope or

spectrum analyzer. Further to these operations, SpectrumAnalyzer also allow for

choosing the display and operation settings including linear and dB scale, windowing

type, and number of frequency bins. Both classes run in parallel to the parent

application on separate threads allowing it to be free of the burden associated with

constant monitoring and control. The real-time refreshing procedure is maintained via

special mechanism that will be discussed later in the multithreading section of the OS

concepts.

As for plotting waveforms, a freely available plotting library for .NET by Matt

Howlett and Paolo Pierini is deployed [23]. The library handles all plotting-related

operations from scaling to background colour. This is in line with the whole purpose

behind OOP programming which is to provide classes to facilitate code reusability

enabling programmers to be more productive concentrating on system-level

 26

integration and development rather than starting from scratch in every single project.

One additional consideration while choosing a suitable plotting library is the ability to

support density pixel plots commonly needed in tomographic distribution images. The

next figure depicts such a plot.

Figure 3.3: Density distribution plot

3.5 OPERATING SYSTEM CONCEPTS

At this point, in order to proceed with presenting the remaining features of the

software design, an extremely important concept needs to be imported first from the

Operating Systems world. Multithreading is one powerful feature around which many

of the aspects of real-time systems revolve. Yet at the same time, multithreading is

Pandora’s Box, which once opened, a huge number of inconveniences can stem from

thus gradually degrading the system and even eventually rendering it totally

erroneous.

The following discussion will explain in great details this concept as it will be

revisited again in the Detailed Hardware Design chapter. Although the discussion will

be conducted in a software-orientated manner, the same concepts remain totally valid

in an embedded hardware environment such as an FPGA or a DSP.

3.5.1 Theoretical background - Multithreading:

 27

A thread is essentially a portion of a programme that can execute. Multithreading

refers to the ability of an OS to support multiple threads of execution within a single

process [24]. A process is a collection of one or more threads that can run

simultaneously. Of course single processor PCs have only one processor which is

capable of executing only one task at a time. However, the OS schedules and

dispatches among processes and threads resulting in a concurrent effect when

observed over a small interval of time in which the switching occurs. Historically the

privilege of using multithreading was granted to the OS only. Now .NET framework

grants this flexibility to users using any .NET language. Multithreading gives the

programmer a greater control over the timing of application-related events. When the

nature of the program does not require serializing tasks, multithreading becomes

extremely useful. The following figure illustrates various scenarios for multithreading.

Figure 3.4: Threads & Processes [24]

The major benefit of multithreading is that a programmer can make use of a

concurrent execution scheme without performance degradation because the use of

threads does not require an explicit intervention from the OS’s kernel in order to

perform dispatching and monitoring unlike processes.

 28

It was established that concurrency is a powerful concept that can improve the

software architecture of a program leading to faster execution time and better

processor utilization. However, the risks associated with concurrency are enormous.

In order not to drift too far in explaining all sorts of difficulties arising from

concurrency, the discussion will be restricted to the problem relevant to the project’s

nature. The main problem that needs attention is the scenario when two threads try to

access a shared variable. This problem is referred to as the mutual exclusion problem.

The solution has to ensure that only one process (or thread) is allowed to access the

shared memory location at a time such that data integrity is maintained.

The proposed software architecture consists of a parent process which is the

DefaultInterface class. Utilizing a user-friendly menu, an end-user creates a new

session from the options menu. The session in turn creates/opens a file to which

subsequent packet reception will be registered as RandomAccessBurst objects. Then a

session configuration form enables the user to configure a read/write

continuous/single operation to/from a chosen pipe. The operation will commence

immediately. The user may choose to view the incoming signal by pressing the

oscilloscope button. The oscilloscope thread operates transparently and independently

of the parent process and may spawn the spectrum analyzer thread upon user’s

request.

3.5.2 Mutual exclusion solution adopted:

When the software is fully operational, one parent process DefaultInterface runs in

parallel alongside two major child threads; SoftScope and SpectrumAnalyzer. As

stated above, this parallelism must not result in multiple accesses to a shared memory

resource. In order to accomplish mutual exclusion, all global variables are

encapsulated within a class called GlobalVariables. Within GlobalVariables,

private data members are protected by means of the Monitor class. Monitor class is

part of C# Threading namespace which provides thread synchronization. Listing 3.5

describes how class Monitor can be used to protect shared variables.

Listing 3.5

public RandomAccessBurst USB_Packet
{

get

 29

{
// obtain lock on this object
Monitor.Enter(this);

// tell waiting thread (if there is one) to
// become ready to execute (Started state)
Monitor.Pulse(this);

RandomAccessBurst RABCopy = this.usbPacket;

// release lock on this object
Monitor.Exit(this);

return RABCopy;

} // end get

set
{

// acquire lock for this object
Monitor.Enter(this);

// set new value
this.usbPacket = value;

// tell waiting thread (if there is one) to
// become ready to execute (Started state)
Monitor.Pulse(this);

// release lock on this object
Monitor.Exit(this);

} // end set

}

Method Enter is used to obtain lock on an object. Before releasing lock on the object

using method Exit, method Pulse tells the thread that has been blocked (if any due to

its attempt to access this object) to become ready to resume executing as this object is

about to be released [25]. Attention needs to be drawn to an important consideration

in the “get” property due to one special case. While a thread in the “get” property and

about to release lock on object, another thread could be assigned the processor

immediately after the monitor is released and before the return executes. In this case

the first thread would receive the new value modified by the second thread. Therefore,

copying the critical object first ensures that the first thread receives the original value

and not the one which has just been updated by the second thread.

All critical variables within class GlobalVariables use this simple yet powerful

class. .NET framework provides other alternatives for ensuring mutual exclusion such

as class Mutex. In general, unless the complexity of the design dictates the

 30

deployment of the more sophisticated approaches in remedy to a certain situation, it is

always advisable to keep the design as simple as possible.

One more issue needs to be mentioned at last for the sake of completeness. When

instantiating the new thread, its constructor receives the GlobalVariables object as a

parameter which will be stored to a similar local instance originally set to reference a

null. In OOP languages such as C# and JAVA, no explicit use of pointers is

performed by programmers. However, one must bear in mind that setting an

uninstantiated instance of an object to a previously instantiated one (using the

keyword new) is equivalent to copying a pointer (reference) to an object into the un-

instantiated copy. Therefore, effectively the new thread’s constructor stores a

reference to the original object in a suitable local uninitialized object of the same type

without allocating new memory space for it.

3.5.3 Plot refreshing mechanism:

In the following paragraph, the problem of refreshing a windows form will be

addressed. The oscilloThread thread will be utilized as the object of discussion.

However, the same result applies to the spectrThread in exactly the same manner.

Windows forms suffer from a legacy inherent limitation requiring that methods called

from outside the control’s creation thread be marshalled to (executed on) the control’s

creation thread [26]. The nature of refreshing a plot within a windows form suggests

that refreshing be scheduled on a regular basis to deliver a steady rate. This can be

handled by a background thread that allows the interface to remain responsive while

refreshing is being performed in the background without having to poll on the event.

Still due to the above mentioned limitation, the outside call needs to be marshalled on

the oscilloThread thread.

To accomplish this refreshing mechanism, first the method scopeRefresh was

defined. This method is called from the background thread. It is called through a

BeginInvoke call so that it is always “marshalled” to the thread that owns the

plotSurface control. In turn BeginInvoke requires a delegate as an argument. In

.NET framework, a delegate is equivalent to a function pointer. The following piece

of code shows various entities defined within SoftScope class.

 31

Listing 3.6

// Background Thread
private delegate void ScopeRefreshDelegate();

private Thread refreshThread;
.
.
private ScopeRefreshDelegate scopeRefreshDelegate;
.
.
scopeRefreshDelegate = new ScopeRefreshDelegate(scopeRefresh);

Upon selecting the “Start Refreshing” option in the View menu list, the following

code will be executed:

Listing 3.7

refreshThread = new Thread(new ThreadStart(ThreadProcedure));
refreshing = true;
refreshThread.Start();

Now the refreshThread is instantiated and started. Listing 3.8 shows the actual

thread procedure. This method runs in a background thread to refresh the

plotSurface.

Listing 3.8

private void ThreadProcedure()
{

while (true)
{

try
{

// Perform a BeginInvoke call to the list box
// in order to marshal to the correct thread.
// Begin the cross-thread call.
IAsyncResult r = BeginInvoke(scopeRefreshDelegate);

}
finally
{

// You are done with the refresh

// Raise an event that notifies the user that
// the refresh has terminated.
// You do not have to do this through a
// marshaled call, but
// marshaling is recommended for the
// following reason:
// Users of this control do not know that it is
// multithreaded, so they expect its events to
// come back on the same thread as the control.
BeginInvoke(onRefreshComplete, new object[] {this,
EventArgs.Empty});

}
Thread.Sleep(100);

}
}

 32

The comments in listing 3.8 describe the overall operation of the thread. One last note

needs to be pointed out with regards to the refresh rate. The refresh rate of the plot is

determined by the number of milliseconds passed as argument in the method Sleep.

In this case, 100 ms results in 10 Hz refreshing rate. Sleep method instructs the thread

to give up its time slice and stop execution for a certain number of milliseconds.

In conclusion, the source tree of the host application is shown in figure 3.5.

Figure 3.5: Host software source tree

 33

Chapter 4

Detailed Digital Hardware Design

4.1 INTRODUCTION

In this chapter, important digital hardware design considerations will be tackled.

Rather than explaining the code, an emphasis on the functional behaviour of various

design entities, whether procedures or modules, will be placed. The reader is to be

directed to the VHDL appendix for the commented detailed code.

4.2 HARDWARE CONCURRENCY

4.2.1 Identifying the problem

Following on the multithreading discussion presented in chapter 3, hardware threads

or processes should also ensure mutual exclusion. In VHDL, a behavioural

architecture contains one or more processes running in parallel. However, no multi-

source signals are allowed. A multi-source signal is one that can be written to

(modified) in two or more distinct processes. This synthesis constraint guarantees

internal signals integrity. One the other hand, depending on the nature of the system,

restricting modify-accesses to one hardware process may result in a sequential

execution scheme. Therefore, arises the question whether concurrency should be lost

in the favour of meeting synthesis constraints, as in such a case, the adoption of

FPGAs would become questionable, with the end result resembling that of an ISA

computing solution.

In order to meet synthesis constraints and still have as many parallel processes as

possible accessing a shared resource, the following scheme depicted in figure 4.1 is

applied. The shared resource receives only one modifying signal. A multiplexing

process selects which of many connected signals to route to the shared resource in

accordance to a selecting input signal. The inferred multiplexer process is an

 34

asynchronous one with a sensitivity list consisting of all input signals including the

select signal. Again the select signal can not be modified but in one process. This

process is an arbiter process that listens to a combination of requests from all relevant

processes to supply the select signal accordingly. The arbiter process has to account

for all possible scenarios including the prohibited ones in order not to result in any

unexpected behaviour.

Figure 4.1: Abstract solution for hardware mutual exclusion

Another issue to be kept under consideration is that in VHDL, a shared resource can

be as tiny as a mere signal, or as large as a fully functional module such as an external

bus driver whose use is restricted to one process at a time.

4.2.2 Proposed solution

For assessing the PC USB connectivity, Xilinx’s core generator was used to produce a

digitally-synthesized sine waveform which is sampled at relatively high frequency.

The sampling clock is the system’s clock divided by eight MHzMHz 125.3825 =

leaving a good temporal margin (8 clock cycles) in which to manipulate the sample.

Each sample is represented over 16-bit two’s complement integer notation. Thus in

 35

order to maintain a continuous stream of uninterruptible packets, sample packing and

transmission have to occur simultaneously. This is achieved by implementing a

double buffering scheme in which simultaneous read and write operate seamlessly.

The Spartan-3 component library has a built-in dual-port RAM that enables

reads/writes operations from/to the same block RAM. Furthermore, one can choose

among various configurations for partitioning the total available bits. Thus in

principle while filling the upper half of the buffer, the lower half can be read out as to

accomplish a smooth read/write working scheme. Nevertheless, the use of two distinct

RAM blocks was necessary simply because each block can accommodate for up to 1K

18-bit words and the software design requires that a constant 512 samples be sent at a

time.

In VHDL code, two processes were implemented that operate interchangeably in a

loop to supply the SX2’s FIFO with packets at a constant rate. This constant rate

along with the endpoint bandwidth will be assessed later in chapter 5. Process

sine_packing fills one of the RAM buffers with samples whenever instructed to by

the process which will consume this buffer. In turn, sine_packing uses services from

new_sample_rdy process which operates at the sampling clock to flag the readiness

of new sample. This was necessary as in VHDL a process is only allowed one clock to

operate on which conforms to what is expected from a transparent hardware

modelling language. The transmitting process, in this case the mainstream process,

detects the availability of a full buffer by means of synchronization flags and

commences the transfer immediately. The inter-process synchronization mechanism

will be discussed in the next section.

Figure 4.2 is the metaphoric hardware representation of the double buffering scheme.

Two 1:2 demultiplexers alongside a 2:1 multiplexer are used for the read enable, write

enable, and read data respectively. This hides which buffer is being currently accessed

from the producing and consuming processes. Because write is always performed by

sine_packing process and read is always carried out by the mainstream process no

further multiplexing is needed although it is possible. Moreover, no arbiter process is

implemented as the selecting signal is always modified by the mainstream process

which decides when to start/stop sine_packing process by means of synchronization

flags.

 36

Figure 4.2: Double buffering scheme

Table 4.1 shows the truth table of the logic operations set by the select signal.

Table 4.1: Select signal truth table

buffSel<1:0>

wrSel rdSel
OPERATION

0 0 Prohibited

0 1
Write buffer 1

Read buffer 2

1 0
Read buffer 1

Write buffer 2

1 1 Prohibited

 37

It is worth pointing out that the multiplexing process is inferred rather than

instantiated, i.e. the logical operation is achieved in an implicit manner using a case

statement which account for both the multiplexing and demultiplexing actions.

Listing 4.1 shows the VHDL implementation of the above schematic.

Listing 4.1

myDemux : process (write_enable, read_enable, rwSel, read_data1, read_data2)
begin
 case rwSel is
 when "00" => -- NOT ALLOWED, however in case
 write_enable1 <= '0';
 write_enable2 <= '0';
 read_enable1 <= '0';
 read_enable2 <= '0';

 read_data <= (others => '0');
 when "01" =>
 write_enable1 <= write_enable;
 write_enable2 <= '0';
 read_enable1 <= '0';
 read_enable2 <= read_enable;

 read_data <= read_data2;
 when "10" =>
 write_enable1 <= '0';
 write_enable2 <= write_enable;
 read_enable1 <= read_enable;
 read_enable2 <= '0';

 read_data <= read_data1;
 when "11" => -- NOT ALLOWED, however in case
 write_enable1 <= '0';
 write_enable2 <= '0';
 read_enable1 <= '0';
 read_enable2 <= '0';

 read_data <= (others => '0');
 when others => NULL;
 end case;
end process;

4.3 INTER-PROCESS SYNCHRONIZATION

Inter-process synchronization refers to the mechanism by which a timely order is

maintained among a group of processes. The presentation of this section was

intentionally delayed after the introduction of hardware concurrency section so that

the above discussion justifies the need for such arrangement.

 38

Inter-process synchronization is realized via declaring a custom record type

InterprocessSync. In turn, InterprocessSync deploys another custom record type

status_flag. Listing 4.2 shows the declaration of both types.

Listing 4.2

type status_flag is (INPROGRESS, FINISHED);

-- This record type maintain synchronization between parent & child
-- processes

 type InterprocessSync is -- InterprocessSynchronization
-- Record type

 record
 syncFlg : std_logic; -- Synchronization Flag

-- Modify Authority: parent
-- process

 status : status_flag; -- Status Flag, Modify Authority:
-- child process

 end record;

The first type syncFlg can be thought of as the asynchronous resent of the child

process. It is solely modified by the parent process. The second type is meant to be

modified by the child process upon the completion of the required operation. The

parent process can poll on this flag occasionally or constantly to test whether a certain

task has finished. For a successful synthesis of state machines, the Xilinx XST

synthesis tools demand that state machines be written in a manner that conforms to

the predefined VHDL language templates; otherwise, the code becomes

unsynthesizable despite its logical synthetical correctness. For this reason, status flags

have to be polled on rather than included in the sensitivity list of a process.

Listing 4.3 shows a typical scenario for using this synchronization mechanism.

Listing 4.3

when PACK_IN_BUFFER =>

 case indexer is
 when 0 =>
 if (buffAddress = "1000000000") then
 indexer := 4;
 else -- a packet has been stored
 smplRdy.syncFlg <= '1';
 increment(indexer);
 end if;

 when 1 =>
 if (smplRdy.status = FINISHED) then
 smplRdy.syncFlg <= '0';
 increment(indexer);
 end if;
.
.

 39

.
new_sample_rdy : process (smplRdy.syncFlg, clk_sampling)
begin

 if (smplRdy.syncFlg = '0') then
 smplRdy.status <= INPROGRESS;
 elsif (clk_sampling = '1' and clk_sampling'EVENT) then
 smplRdy.status <= FINISHED;
 end if;

end process;

Process new_sample_rdy simply detects an active sampling clock edge. In more

complex processes, a state for halting the sequential execution has to be inserted. This

is important in order to ensure that while the parent process has not yet acknowledged

the FINISHED flag by deasserting its sync flag, the child process is kept trapped in an

idle state.

Figure 4.3 presents a graphical illustration of the inter-process synchronization

scheme explained above applied on the dsp_packing process.

Figure 4.3: Inter-process synchronization illustration chart

 40

4.4 VHDL CODE MODULAR ARCHITECTURE

In order to converge to the final solution in a systematic manner, it was necessary to

adopt a top-down modular approach that allows for formality, segregation, generality,

and incrementality [27]. Moreover, the system should exhibit high cohesion and low

coupling as set by the general guidelines for embedded systems.

As a result, the digital design architecture consists of the following modules:

 Main Module: At the very top of the design hierarchy, it is in this module that

all other modules are instantiated and linked (though processes) to deliver the

system’s final desired functionality.

 bus_driver Module: Although this module does not include much logic

operations, it is supplemented by a set of functions defined in package

SX2_Utilities as to implement SX2 USB device timing diagrams. In

essence, it communicates external signals to/from internal peers after a

possible application of an intermediate conditioning logic. The partitioning of

the bus into external and internal falls under the general design practices that

facilitate the functional modularity of the system. The internal bus always has

an active high polarity whereas the external one can be dynamically tuned

with respect to the input active_s signal signifying the desired active state. A

simple xnor gate implements this truth table. Also this module controls the

state of the I/O buffer according to the current operation being performed.

Originally, during the work on this project, this module generated the

synchronous state machine for read/write operations utilizing internal signals

that instruct the module when to do so. Later, it turned out that the device

starts up in the asynchronous mode and thus implementing asynchronous

accesses was necessary for the initial configuration of the chip. Then realizing

that configuration is only done once and that a 16-bit FIFO access alleviates

the need for a synchronous time-efficient one, the synchronous interface was

substituted with the asynchronous one altogether. Furthermore, the

asynchronous interface has the advantage of being more EMC friendly due to

the absence of the interface clock which is always desirable.

 41

 RAM_Buffer Module: Equips a block of dual-port RAM with necessary logic

to implement an architecture which is capable of operating in either FIFO

mode or addressable RAM mode.

 clkdivider Module: is a modification of the Xilinx’s Digital Clock Manager

(DCM) library component that provides the system’s synchronizing clock,

other divided versions, and a doubled version. The divided versions are used

to sample the diagnostic sine waveform at lower rates than that of the system’s

clock which are
2

clk ,
4

clk ,
8

clk ,
10
clk , and

16
clk . The twice as much version is

used in the dspPack process to provide more clock resolution for manipulating

the incoming/outgoing asynchronous data.

 sinewaveform Module: supplied by Xilinx’s core generator as a means of

assessing the maximum achievable USB bandwidth and demonstrating the co-

designed GUI software functionalities.

 DSP_Driver Module: This module is an asynchronous state machine that is

controlled solely by the DSP’s strobing signals.

 synchronizer Module: This module synchronizes the signals outputted by

DSP_Driver to the internal clock in Main. The synchronization mechanism

will be discussed later in the DSP-related Hardware Design chapter.

4.4.1 A closer look at SX2_Utilities package

SX2_Utilities contains type definitions and constants used throughout the code. For

instance, both USB descriptor and internal register definitions are implemented as

arrays of constant values. While mySX2Descr is a 1D array of 148 values detailing

various USB enumeration fields (such as VID, PID, and Endpoints configurations),

sx2RegsDef is a 2D array whose first column corresponds to the indices of internal

registers and second column corresponds to their desired bit patterns. VHDL

automatically allocates ROM blocks for these arrays without explicit instantiation and

initialization from the designer. Furthermore, SX2_Utilities contains two classes of

functions and procedures; simple utility functions and SX2 timing procedures which

are meant to be called from within a process on active clock edges until completion.

In addition, by passing current and next state signals as arguments to a procedure, this

 42

procedure can alter the current state of the sub FSM whenever desired once

completed.

Utility functions and procedures include:

 strobe

 de_strobe

 toggle

 next_step

 reset_step

 increment

 reset_index

SX2 procedures are:

 single_async_read

 single_async_write

 sx2ReadRegAsync

 sx2WriteRegAsync

 interrupt_status_read

 latch_addr_asyn_WR

 signle_fifo_async_read

 signle_fifo_async_write

 end_packet_asyn

 waiting_loop

It is beyond the scope of this chapter to describe the implementation of every single

function. Nevertheless, the state machine for sx2WriteRegAsync will be detailed as a

sample to illustrate the general concepts deployed in the implementation of all

procedures.

Figure 4.4 shows the state machine for sx2WriteRegAsync procedure. The syntax of

the flowchart is meant to convey the algorithmic behaviour of the procedure

independently of the actual VHDL code. For instance, wait(SETUP_TIME) signifies

 43

that addr is allowed a window of SETUP_TIME in which to settle before asserting

signal wr. In the VHDL code, succession of states containing the statement

next_step(dispatcher) are inserted to generate the necessary timing. That is, the

clock resolution determines how flexible the resultant timing can be. The

manufacturer specifies minimum timing parameters for each asynchronous operation.

Ultimately those parameters are functions of many physical properties such as

temperature, fanout, and drive current. Thus it is advisable that the designer leaves a

relaxed margin accounting for possible variations due to the mentioned factors.

Figure 4.4: sx2WriteRegAsync state machine

 44

Listing 4.4 shows roughly how timing parameters are being generated.

Listing 4.4

case dispatcher is
 .
 .

when 10 =>
 next_step(dispatcher); -- \
 -- \
 when 11 => -- / 2*40 ns = 80 ns > 50 ns
 next_step(dispatcher); -- /
As shown in the flowchart, the procedure checks and polls if necessary on the

READY flag after each operation before proceeding to the next. Towards the end, the

dispatcher is reset, the current state is assigned the next state, and the status flag is

assigned the finished state. The finished flag is the terminating condition upon which

the synchronous calling program will stop evaluating the procedure on active clock

edges. Listing 4.5 demonstrates a typical situation for calling a procedure from within

the mainstream process.

Listing 4.5

when CONFIG =>
case index is

 when 0 => -- Write register
 val := sx2RegsDef(i,1);
 if (val = X"FE") then
 status <= INPROGRESS;
 current_state <= SETDESCR;
 next_state <= SETDESCR;
 i := 0;
 index := 0;
 LED1 <= '1';
 elsif (status = FINISHED) then
 status <= INPROGRESS;
 i := i + 1;
 index := 1;
 else
 sx2WriteRegAsync(dispatcher, next_state, current_state,
 status,
 wr, RDY, addr, w_data,
 sx2RegsDef(i,0), val
);
 end if;

The procedure is called successively until one of the conditions of the if-statement is

met. The programmer may or may not wish to alter the current execution state

according to the combination chosen for current_state and next_state. It is

extremely important that the nesting of the if-statements ensure that worst case output

propagation can occur within the system’s clock period. For this reason, a relatively

slow clock (25 MHz) was chosen for the mainstream process responsible for

 45

initialization and packets sending which are the operations that make use of the

bus_driver module. While it was necessary to use faster clock of more time

resolution when dealing with external asynchronous signals coming out of the

dsp_driver.

Finally, the module view of the developed design is presented in figure 4.5. The figure

shows that the use VHDL test benches was vital in the theoretical behavioural model

simulation and in the post-place & route model simulation. As a simulation means,

VHDL acquaints the designer with additional powerful concepts such as inertial and

transport delays which emulate the realistic behaviour of hardware.

Figure 4.5: Design module view.

 46

Chapter 5

DSP-Related Digital Hardware Design

Out of the various implemented VHDL modules, two are directly involved with the

outside asynchronous DSP signals. These are dsp_driver and synchronizer

modules. dsp_driver interfaces to the DSP’s parallel port strobe signals, while

synchronizer makes the dsp_driver signals align with the internal clock of the

system. In the coming two sections, both modules will be investigated thoroughly

revealing all design aspects that had to be met.

5.1 DSP INTERFACE

5.1.1 Introduction

The ADSP-21262 is a powerful 32-bit DSP that is ideal for many applications

including the imaging problem [20]. Its architecture combines a powerful 400

MMACS or 800 MFLOPS processing core with high performance dedicated buses for

Program Memory (PM), Data Memory (DM), and I/O. This enables multiple accesses

to be issued in a single instruction. To be more precise, the DSP can access two data

operands from memory blocks, fetch an instruction from cache, and perform a DMA

transfer in every instruction. Furthermore, the DSP has 22 DMA channels that support

a wide variety of peripherals including one parallel port, serial ports, SPI ports (Serial

Peripheral Interface), and input data ports [28]. Thus, in order to make use of the

Direct Memory Access feature of the DSP, one of the mentioned peripherals has to be

exploited. In a DMA-driven transfer, the processing core is only involved at the

beginning and end of the transfer and is free to perform other tasks during data

transfer. In other words, a DMA-driven access requires no intervention from the

processing core, resulting in transparent access to the DSP’s on-chip memory with

maximum processor utilization. In the project’s context, processor utilization is

defined as the effective instructions (whether computational or control) that the DSP

 47

executes while performing the intended algorithm as opposed to those performed by

the DSP to transfer data or to interact with events originating from the outside world.

In mathematical sense, processor utilization can be described as follows:

 %100×
+

=
effectiveoverhead

effectivenutilizatio

As far as the throughput is concerned, the parallel port is the most promising

peripheral to interface with. When interfacing to intelligent or memory-mapped

peripherals, the parallel port can accommodate for up to 132 Mega bytes per second.

Clearly, such a raw high bit stream of 1.056 Gbps is incommunicable to PC via

USB2.0. Nevertheless, the availability of such high bandwidth link between the

FPGA and DSP adds to the versatility of the system and allows for more sophisticated

exploitation of the overall platform. For instance, if the DSP was thought of as a

centralized floating-point processing unit, the presence of such a high throughput port

could facilitate a back-and-forth operation upon requests from a master FPGA. The

system being developed at the moment presumes that operations are being solely

initiated and controlled by the DSP as a true master. This needs not always be the

case, as it can waste precious processing utilization. At the far end of the system,

specifically, in the acquisition nodes, FPGAs have been so far restricted to

preliminary conditioning DSP operations in a complementary fashion, whereas the

master DSP performed the rest of the tasks including algorithm-control ones.

However, emanating from the nature of the problem being tackled, assigning control

and interface tasks to the FPGA and highly demanding processing tasks on the

floating-point DSP may improve the design complexity limit for which the underlying

platform can accommodate e.g. hardware implementation of neural network [16].

From a first glimpse, it may seem that there is a caveat associated with the use of the

parallel port. Due to its very nature, it is dominantly being controlled by the DSP.

Contemplating this for a second, the solution may seem quite trivial. One can

associate the read/write operations with interrupts upon which the DSP commences

reading from or writing to the FPGA. This brings back balance to the proposed

master-slave relation between the FPGA and DSP respectively. In a single task

system, the relation between the FPGA and DSP is of little importance as the DSP is

always expected to perform a predefined set of tasks in the fastest possible manner.

 48

On the other hand, when looked at as a floating-point localized processing unit in the

platform, the DSP’s task can be very much dynamic. An example can be a non-linear

adaptive algorithm that is being controlled by the FPGA with zero utilization

overhead. The FPGA can request different operations from the DSP depending on the

current situation while convergence is in progress. Of course, there is a tiny overhead

with regards to implementing a protocol that facilitates various scenarios. However,

with such good degree of coupling available between the reconfigurable fabric and the

CPU [29], such issue can not pause serious bottleneck problems in this working

scheme. Moreover, from the DSP’s perspective, the algorithmic overhead

accompanying such a scheme is minimal as decoding a readily available command is

faster than going through the chain of deduction which has led to the issuing of this

command in the first place. In very simple words, if the FPGA is allowed to do what it

is good at (customized parallelism) and the DSP is guaranteed a fully operational

pipeline (effective instructions), the overall platform can be tuned to approach even

the highest computationally demanding class of applications.

5.1.2 Parallel port description

Before presenting the asynchronous VHDL design developed to interface with the

DSP’s parallel port, the latter needs to be described first. Figure 5.1 shows a block

diagram of the parallel port.

 49

Figure 5.1: Parallel port block diagram [28]

The parallel port utilizes three signals and a 16-bit bus.

 Address/Data bus (AD<15:0>)

 Read strobe (RD)

 Write strobe(WR)

 Address latch enable (ALE)

The use of these pins will become apparent while explaining the VHDL code.

5.1.3 DSP_Driver module

DSP_Driver is the module responsible for interfacing with the DSP’s parallel port

pins. This module consists of seven concurrent processes five of which are

responsible for the asynchronous detection of ALE , RD , and WR . Processes

WAIT_ALE_proc, WAIT_WR_Ris_proc, WAIT_WR_Fal_proc, and WAIT_RD_Ris_proc

are edge-sensitive while WAIT_RD_Fal_proc is level-sensitive. This arrangement is

important because of the nature imposed by the 8-bit mode interface. The 8-bit read

interface was necessary to be implemented in order to successfully boot the DSP from

the FPGA. While the 8-bit write interface was not implemented because it simply

 50

offers no advantage over the 16-bit mode, although modifying the current design to

include the 8-bit write mode is straightforward. Fundamentally, the parallel port boot

mode uses the 8-bit interface in order to be able to address up to MB of

external memory space. The DSP driver port is segregated logically into external and

internal. The external portion interfaces to the parallel port’s signals plus a DSP

enable pin by which to activate the parallel port operations. The DSPEN pin is used to

instruct the DSP to start transmission/reception. The internal portion or the port

includes:

16224 =

 ioe_AD: controls the input-output tri-state buffer for bidirectional AD bus

instantiated in Main. Because of synthesis purposes, Xilinx design tools

requires that buffers be instantiated only in the top module of the design

hierarchy. Ioe(0) controls the lower tri-state buffer byte and ioe_AD(1)

controls the upper one. Again this was done in order to meet the 8-bit mode

timing specifications. Since two separate processes (WAIT_RD_Ris_proc and

WAIT_RD_Fal_proc) are required to modify ioe_AD in accordance to the mode

of operation (8-bit/16-bit), it is necessary to have process ioe_AD_mux_proc

multiplexing between ioe_AD_Ris and ioe_AD_Fal subject to whether

RD_bar is high or low.

 dsp_commence_syncFlg: can be thought of as the asynchronous reset of the

five processes to be manipulated by the process which will make use of this

module.

 dsp_status: is implemented using a concurrent VHDL signal assignment. For

the 16-bit read from DSP operation (wait on WR with ALE cycle present), it

is analogous to the FINISHED flag whose functionality was explained in the

previous chapter. When ALE cycle is only sent at the beginning of the

transfer, it is the result of the constant comparison of the ever toggling flags

upon both WR edges. For 8-bit write to the DSP operation (wait on RD), it

simply detects a RD falling edge on which to place data on the lower bus

byte. That is, the functionality of this pin changes according to the desired

mode of operation set by dspAccessMode and dspRdWr.

 dspAccessMode: determines whether the module is to expect an 8-bit or 16-bit

interface mode.

 51

 dspRdWr: of particular importance for the addr_mux_proc process that

determines how to pack the internal 24-bit dsp_address_out. The reception

of a valid address depends on the current operation being performed

(read/write) and its mode (8-bit/16-bit) as well. Internally this is accomplished

via local signals signifying the occurrence or relevant external events namely

validDataInRis and validDataOutFal.

 dsp_address, dsp_data_in, dsp_data_out, and dsp_enable are self-

explanatory.

Figure 5.2 shows a typical timing diagram for the a16-bit mode read operation (wait

on WR)

Figure 5.2: 16-bit write

This is a simple example in which the module receives two 16-bit words both on the

falling edge of the ALE and the rising edge of the WR . Two internal signals are

toggled upon each reception. By continuously comparing these signals one can

determine when both words have been received. At the end of the ALE cycle, a 16-

bit address word has been received. After toggling the validAddr signal, dsp_status

(defined as validAddr xnor validDataInRis) goes to zero because a valid data has

not yet been received. When the validDataInRis signal goes high upon the rising

edge of WR , dsp_status becomes true again signifying that a valid address-data

combination is now available to be sampled from the internal portion of the interface

bus. Utilizing this simple yet powerful mechanism, an external process can tell when

to sample the interface signals by probing the dsp_status signal. However, the issue

of synchronizing these signals with respect to the internal clock is yet to be tackled.

 52

For this reason, synchronizer is first applied to dsp_status, dsp_address, and

dsp_data_in before a synchronous process can receive these signals.

As with regard to the 8-bit write mode (wait on RD), every 256 RD cycles, the DSP

updates the upper 16-bit address (ADDR<23:8>) in one ALE cycle. The least address

byte (ADDR<7:0>) is supplied on the upper AD byte every RD cycle. Thus on the

falling edge of RD , DSP_Driver reads ADDR<7:0> and places a valid data byte on the

lower AD bus as soon as it becomes ready. On the rising edge of RD , the DSP latches

the data byte with zero hold time requirements. That is why WAIT_RD_Fal_proc was

implemented as level-sensitive rather than edge-sensitive. When including

dsp_data_out in the sensitivity list, later changes made to dsp_data_out are

allowed to propagate after the occurrence of the falling edge. Figure 5.3 illustrates this

scenario.

Figure 5.3: 8-bit read cycle

5.2 SYNCHRONIZATION MECHANISM

It was established earlier that the reception/transmission of words in the dsp_driver

module occur asynchronous to the system’s clock due to the fact that they are

controlled solely by the parallel port signals. This generates the need to synchronize

the incoming signals in order to guarantee their integrity.

 53

synchronizer takes as inputs dsp_status, dsp_address, dsp_data_in, in addition

to the clock to which these signals are to be synchronized. It outputs synchronized

versions of the above signals namely; sync_out, sync_address_out, and

sync_data_out. Moreover, sync_out is a trimmed version of dsp_status that

extends over one clock cycle precisely. This ensures that even though dsp_status

might still be on for sometime until the reception of new valid address in a new ALE

cycle, it is only detected once in the synchronous process that polls on dsp_status.

This arrangement relieves the internal clock resolution from any dependency

whatsoever on the external asynchronous signals, provided that the internal clock

resolution is fast enough to allow for the detection of the DSP’s signals and to act

upon them accordingly.

synchronizer accomplishes its functionality through the use of two signals namely

event0, and flag, and three processes of which one is completely asynchronous.

proc0 operates on async_signal and assert/deassert signal event0 whenever

async_signal is high/low. In turn, proc1 and proc2 have both clk and event0 in

their sensitivity lists. Listing 5.1 shows the VHDL code for both processes.

Listing 5.1

 proc1 : process (clk, event0)
 begin
 if (clk = '0' and clk'EVENT) then
 if (flag = '0' and event0 = '1') then
 sync_out <= '1';
 sync_address_out <= async_address_in;
 sync_data_out <= async_data_in;
 else
 sync_out <= '0';
 end if;
 end if;
 end process;

 proc2 : process (clk, event0)
 begin
 if (clk = '0' and clk'EVENT) then
 if (flag = '0' and event0 = '1') then
 flag <= '1';
 elsif (flag = '1' and event0 = '0') then
 flag <= '0';
 end if;
 end if;
 end process;

Always synchronized to the falling edge of the clock, proc1 transmits its input port to

its output port if event0 is detected while flag is zero. Otherwise, sync_out is pulled

 54

low. proc2 ensures that during one high cycle of event0, flag is only allowed to stay

low for one clock cycle. Unless event0 is reset by proc0, flag stays high.

Synchronizing these processes to the falling edge is extremely important for the

following reason. Since the system’s internal logic is operating on the rising edge, the

incoming signals should be allowed a finite time in which to settle and propagate

before being sampled again at the rising edge. Otherwise, depending on logic routing,

sync_out, sync_address_out, and sync_data_out may or may not happen to

coincide with the rising edge resulting in probable error on random basis which might

even affect certain bits non-uniformly. This conforms to the classical rule in digital

logic design; always transmit at one clock edge and receive on the other.

5.3 DSP BUFFERING SCHEME

Similar to the packing scheme encountered earlier for the digitally synthesized sine

waveform, the DSP utilizes a buffer to be read from or written to by two distinct

processes interchangeably. However, this time only one buffer is needed. Because the

two processes alternate between read and write operations, all buffer signals except

for the data read out have to be multiplexed ensuring that no multi-source signals

occur. In the terminology depicted in figure 5.3, Prs suffix denotes process signals

while Thrd signifies thread ones. While there is no ultimate distinction between

processes and threads hardware-wise, a hardware thread or a spatial thread [30] refers

to a portion of synthesized sequential logic that complements and aids the main

process. That is, process dsp_packing is a thread while process mainstream is a

process. Figure 5.4 shows the metaphoric schematic equivalence of the developed

VHDL code.

 55

Figure 5.4: DSP buffering scheme

Table 5.1 illustrates the interchangeable operations set by signal dsp_Sel.

Table 5.1: dsp_sel operations

Dsp_Sel OPERATION
0 read Prs

write Thrd
1 write Prs

read Thrd

 56

Chapter 6

Experimental Results & Analysis

In this chapter, various experimental issues along with their analysis will be

presented. The chronological order of the following subsections reflects the natural

course through which these issues were tackled.

6.1 MISCELLANEOUS HARDWARE DESIGN
CONSIDERATIONS

During the VHDL hardware design phase, a rather unexpected set of considerations

needed to be addressed. Some of the attempted solutions were found after

investigating some third-party reference designs while others were completely

spontaneous. The following discussion will describe and detail all encountered cases

along with their solutions.

Firstly, Right from the very beginning, when resetting the SX2 chip, a minimum delay

of sμ200 had to be inserted both while reset is low and after reset is pulled high. The

second delay interval allows the internal logic of the SX2 to stabilize before

proceeding with configurations. This is relatively straightforward and logical.

However, experimentations showed that unless SX2 pins were tri-stated while reset is

in progress, the SX2 chip may behave quite strangely in the subsequent operations.

This may be due to some sort of leakage current that affects the state in which SX2’s

internal logic starts up after reset.

Secondly, while configuring the internal registers of the SX2, it turned out that a delay

after each register write operation had to be inserted. Otherwise, the chip stops

generating interrupts. This particular problem needs clarification from Cypress. The

solution for it was found when investigating a third-party C driver code written

originally for an embedded OS called VxWorks [31]. In the C code, the delay is

specified as a call to a function whose parameter is an integer signifying the units of

 57

delay needed. In VHDL, a very relaxed delay of sμ300 was appended to each register

write operation.

Thirdly, when writing the USB descriptor, the programmer has to ensure that

complete 500 bytes are written to the internal memory, regardless of the real length of

the customized descriptor. In VHDL, after committing 148 bytes to the descriptor’s

RAM, consecutive fictitious writes had to be performed until the index becomes 500.

It seemed as if the descriptor RAM required those fictitious writes to increment some

internal counter which is logically ‘and’-ed with whatever triggers enumeration later.

Fourthly, for the enumeration to occur properly, the ENUMOK interrupt flag had to

be polled on. In other words, experimentations showed that it was not sufficient to

expect the occurrence of ENUMOK directly after the SX2 had been connected to the

PC. Rather, the FPGA repeatedly waits on interrupts and reads them. Unless the

current interrupt is ENUMOK, the FPGA keeps on waiting for yet another interrupt.

This is unexpected as the manufacturer specifies that once the SX2 is connected to the

PC, ENUMOK is the first interrupt to occur.

Finally, when switching to the 16-bit FIFO access mode, a dummy packet has to be

committed first before starting regular packet sending process. Initially, all FIFO

accesses were carried out using the default 8-bit mode. Then realizing that packing

rate can be twice as much when utilizing the 16-bit FIFO access mode, it seemed

obligatory to exploit this feature. Nevertheless, once the WORDWIDE bit in the

EPxPKTLENH register is set, the very next packet to be committed though that

endpoint has to account for the fact that its reception on the PC side would be

erroneous. Therefore, a dummy packet had to be sent first in order to allow the

internal FIFO logic to adapt to the new configurations.

6.2 FPGA INTERNAL LOGIC ROUTING

6.2.1 Problem encountered & solution

At some point during the project development, after a continuous connection was

successfully established, the mere inclusion of any form of additional logic caused the

system to randomly stop transmission or even collapse altogether. That is, once any

extra logic was added to the VHDL design, the system either interrupted packet

 58

transfer after a random number of packets or failed to enumerate with the peer PC in

the first place. This was amongst the most serious unforeseen difficulties encountered

in the project. Doubt was applied systematically to virtually every aspect that had

been achieved thus far. The similar reference designs investigated utilized high-end

DMA controllers [32] [33] with typical internal clock of 130 MHz and thus much

more time resolution. Coupled with some inconsistencies in what turned out later to

be PC-related problems (refer to section 6.3), the robustness of the 25 MHz FPGA

asynchronous interface was even questioned. The effect of the FPGA internal logic

routing on the stability of the system’s performance was unprecedented. After

spending a significant amount of time trying to troubleshoot this problem, it was not

until the addition of a mere signal had caused a system’s failure that the nature of the

problem has started to emerge. This indicated that something wrong took place in the

FPGA. Between a fully working design with no additional signal routed to the

debugging port, and a totally failing scenario with the inclusion of that signal, there

was a mere debugging signal. The sudden deterioration of the system was at last

traced at the synthesis & implementation options.

In the synthesize process properties, the following modifications were introduced:

 Optimization goal & effort: speed & high respectively.

 FSM encoding: gray.

 Max fanout: 100.

In the implement process properties, the following changes were made:

 Optimization strategy: speed as opposed to area.

 Place & route effort: high.

After re-performing the synthesize and implement processes, the resultant design was

downloaded again to the FPGA, only this time to work with the newly added logic.

6.2.2 Analysis

The difficulty of the problem is due to its twofold nature. Depending on the type of

the logic added, the system either collapsed or degraded. The best theory fitted to

these symptoms can explain to a high degree of confidence the failure of the system,

but not the random pattern manifested in the number of packets received before

 59

transmission is interrupted. The following discussion will attempt to explain the

encountered behavior. In addition, the discussion will be restricted to symmetrical

volatile-memory FPGAs such as SPARTAN-3.

In volatile-memory FPGAs, reprogrammable Static-RAM cells control pass

transistors that steer signals to make routing paths [34] (Figure 6.1). These switches

are characterized by being both resistive and capacitive resulting in large delays (RC),

which dominate that of a CLB. It is the incremental nature of these delays that makes

routing so critical (cumulative effect) and path dependent.

Figure 6.1: SRAM-based pass transistors

As shown in figure 6.2, CLBs and IOBs connect to interconnect segments in wiring

channels, and wiring channels intersect at switchboxes (SBs). On one hand,

interconnect segments are logical connects i.e. they can be made up of portions

interleaving several mask layers. One the other hand, due to their large size and

capacitive nature, pass transistors within a switchbox have limited connection

possibilities of further variable lengths as depicted in figure 6.3. In other words, the

uniformity of interconnect segments whether in wiring channels or in switchboxes is

sacrificed in the favor of area (logic density)

 60

Figure 6.2: Symmetrical FPGA Architecture

Figure 6.3: Limited Routability [35]

 61

Figure 6.4 shows a typical routing scenario for the CLBs and SB depicted in figure

6.3.

Figure 6.4: A routing example [35]

Also FPGAs architecture addresses some other needs such as dedicated clock routing

for minimal skew problems.

Furthermore, routers typically use additional strategies that might help in optimizing

designs of which the following are typical: Firstly, routers might employ unused logic

resources as routing resources. Secondly, utilizing silicon-characteristic parameters,

routers can model the effects of various resources to calculate delays which would be

used to assess potential propagation delay of a route for a given option.

As a matter of fact, routing can be thought of as a search problem whose states

(branches in a search tree) are partial routes. The above techniques specific to this

search problem are used as domain-specific knowledge which help in converging to

an optimal solution. In addition to testing whether the final goal is reached, estimator

function assesses the remaining distance to the goal state, and successor function

yields a combination of possible states to which the current state can go. The most

important function in the search problem is the Heuristic function which assesses the

goodness of a partial route against other options. In the routing problem, the Heuristic

function will attempt to minimize critical path delay under timing and routing

constraints [36]. The Heuristic function may use the following condition:

 62

vuvu aDa ≤+ where tEvu ∈∀),(

ua is the arrival time at node u

va is the arrival time at node v

uvD is the delay along),(vupath

tE is the matrix of routes relative to the current state in the search tree { }mTTT ,...,1=

In order to evaluate this heuristic function, some general techniques for solving

optimization problems with difficult constraints are deployed such as Lagrangian

Relaxation [35].

On top of what has been mentioned so far, the fact that various constraints, whether

user or architectural, are strongly coupled with global routing problem requires that

routing be performed simultaneously through cooperative processes. Wiring channels

offer limited flexibility to neighboring resources (IOBs or CLBs). This makes user pin

assignments propagate to interconnect segments allocations. The latter is coupled

through SBs constraints to interconnect segment assignments of other channels

rendering routing a global problem. That is, routing can not be spatially decomposed

into smaller independent manageable problems. Fundamentally, this adds more

breadth to the search problem. For this reason, simultaneous routing can utilize

cooperative concurrent processes with excessive-delays-based heuristic function as a

way of casting preference.

It was established earlier that routing delays are more predominant than that of the

abstract logic ones and that performance is highly influenced by cell placement [37].

The key factor behind the total collapse of the system is its self-timed aspect. As

enough clock cycles were inserted to generate timing specifications set by the SX2,

there was no need to specify timing constraints. At some stage, the inclusion of

additional resources changed routing and in turn degraded performance due to less

optimized paths that violated SX2 timings. Depending on the magnitude of the

additive logic resources, the system either collapsed or degraded. Additive resources

necessitate that routing be placed through difference paths in order to accommodate

for the optimal utilization of area and pin assignments. Changing optimization

strategy to timing-based rather than area-based improves critical paths delay. While

altering the effort properties to high forces the synthesizer and implementer (place and

 63

route) into considering more states in the search tree which will improve performance

eventually. Decreasing the fanout property from 500 to 100 relieves the system from

some unnecessary burdens. Gray encoding in principle is more noise immune as only

one bit is likely to change while in a given state. The latter option was modified out of

desperation and is of no significant impact inside the FPGA, except that it might

consume a little bit of extra logic as its encoding is more logic demanding that a

regular adder. However, what is left yet to be inferred is the following: in some cases,

the inclusion of additional logic had caused the SX2 to interrupt its transmission after

some arbitrary number of packets. A possible cause for this is accidental worst case

propagation delay scenarios which had taken place on a near-random basis.

Combinational logic circuitry may be forced to propagate through all possible logic

levels depending on its inputs. As SX2 functions were developed in an almost

behavioral manner, it is extremely difficult if not impossible to trace this back because

the Xilinx synthesizer automatically produced their logic resources. More

sophisticated IDE tools such as ModelSim allows the developer to examine his/her

designs interleaving among different representations. A logic design developed in

VHDL can be examined more closely by checking its RTL equivalence. Recently, a

huge amount of effort is being put towards implementing full behavioral synthesizers

[38-42] that will significantly improve both complexity and time-to-market issues

associated with contemporary cutting-edge logic designs.

 64

6.3 USB2.0 ENDPOINT BANDWIDTH

6.3.1 Streaming through isochronous endpoint

The USB2.0 specifications define the isochronous transfer as being periodic with

continuous communication between host and device, which is typically used for time-

critical information. This is achieved by encapsulating time-indicative information in

the data. It does not support error detection and correction (CRC), thus unreliable.

Typical application is video streaming at which a minor loss of data may not be even

observable [43].

Unlike bulk transfer, when using isochronous transfer, a pre-negotiated portion of the

available bandwidth in each microframe is reserved by specifying the

wMaxPacketSize field of the endpoint descriptor. Moreover, the latency of the

delivery is specified via the bInterval field of the endpoint descriptor. The latency is

the rate at which the host retrieves isochronous packets from the USB device per

microframe.

In principle, both bulk and isochronous endpoints can yield identical throughput when

operating in an equivalent manner. The criterion upon which bulk and isochronous

endpoint are considered equivalent is a function of size, availability of bandwidth in a

microframe, and polling interval. Size intuitively refers to both endpoints having the

same packet size. Since bulk type uses bandwidth leftovers in a microframe, the rate

at which a bulk endpoint operates is governed by the production of its data plus the

current status of the microframe. When operating alone, a bulk endpoint can use as

much bandwidth as the microframe can accommodate bearing in mind the size of the

bulk packet. On the other hand, an isochronous endpoint must be pre-allocated a

certain amount of bandwidth to be used every polling interval. Effectively, this allows

the isochronous endpoint to operate at a rate lower than that of a microframe. A

technique called PID sequencing orders isochronous packets sent within one

microframe [44].

 65

Away from ideal conditions, an isochronous endpoint is more promising in terms of

throughput. While a bulk endpoint is protected by CRC that has to be acknowledged

by the recipient, an isochronous endpoint does not guarantee data integrity. The

overhead of handshaking in bulk type forces the resending of a packet whose just one

bit might have toggled during propagating through the physical medium. If used for

very high-bandwidth streaming, the slightest error in a packet might be unrecoverable

resulting in transmission stoppage. Whereas in an isochronous type, data in packets

might get affected by minor errors and still be received properly. The key difference

between the two types is the handshaking overhead that deploys a CRC error check

before flagging the successful reception of a packet.

In order to optimize the USB bandwidth, an isochronous endpoint was first utilized

through which data were streamed. The appropriate modifications were introduced to

sx2RegsDef double dimensional array so that all relevant registers were configured

accordingly. In addition, the high-speed section of mySX2Descr array describing

endpoint 6 was setup for the intended task. Surprisingly, the obtained results were not

up to the expectations. The following paragraph discusses the background of the

problem that has led to some disappointing outcomes.

When first released as a legal document, USB did not support isochronous transfer

type. This type was appended at a later stage out of necessity. As it is the case with

any introduction of novel solution in the IT world, many organizations operating

across the spectrum start working in parallel to welcome the new offspring. For this

reason, Windows XP service pack 1 did not support isochronous transfer at first.

Microsoft released a patch to solve this problem [45]. Nevertheless, many people

reported inconsistencies associated with the isochronous type. Microsoft claims that

this problem is solved altogether in the service pack 2. One the other hand, Intel®

have identified that 82801 USB2.0 chipset may have intermittent communication or

connection problems [46]. Intel is not planning any long-term fixes to these issues and

spontaneous solutions may propagate as deep as a bios update.

This research was conducted after identifying the strange problem. Yet all what could

be deduced about it does not exceed the realm of speculations. For each packet, a time

interval of 6 to 7 seconds was observed when streaming through an isochronous

endpoint of 1024 KB size, one transaction per microframe, and a polling interval of 1

(). Clearly as it may seem, a 7 seconds interval is totally illogical. An)11(2 −

 66

oscilloscope was utilized in order to examine a flag indicating whether the double-

buffered endpoint FIFO is full or not. The examination showed that the flag is almost

all the time asserted except for a tiny interval in which the FPGA is allowed to write

more data to the buffer. This reveals that the problem is solely related to the rate at

which the PC is fetching packets. Indeed, it turned out that manual consecutive single

reads yielded a faster rate than that of the automated sequence. This was achieved in

the program by bypassing the stage in which the user specifies various transaction

parameters and substituting it with a press of a button. In an attempt to remedy this

problem by means of programming, a polling thread was developed whose job is to

wait for the transmission to complete before requesting yet another transmission. The

approach was part of an attempt to trace the source of the problem narrowing down

potential causes. Since manual consecutive reads yielded a better rate than the

automated one supplied as part of the USB DLL, it seemed logical to try a customized

automated approach that gets around the potential source of the problem. Listing 6.1

shows part of the code deployed.

Listing 6.1

if (!rdActivePipe.IsIsochronousPipe())
{
 rdActivePipe.SetContiguous(true);
 rdActivePipe.UsbPipeTransferAsync(true, TIME_OUT,
 new D_USER_TRANSFER_COMPLETION(ListenCompletion));
}
else
{
 pollOnPacketDelegate = new PollOnPacketDelegate(PollOnPacket);
 onPollingComplete = new EventHandler(OnPollingComplete);
 this.PollingComplete +=new EventHandler(DefaultInterface_PollingComplete);

 pollOnPackThread = new Thread(new ThreadStart(PollingThread));
 pollOnPackThread.Start();
}
.
.
public void PollOnPacket ()
{
 // Wait for transmission to finish
 while(rdActivePipe.IsInUse());

 int rdlBuffSize = rdActivePipe.GetBuffSize();
 byte[] lbuffer = new byte[rdlBuffSize];

 rdActivePipe.UsbPipeTransferAsync(true, lbuffer, rdlBuffSize, TIME_OUT,
 new D_USER_TRANSFER_COMPLETION(TransferCompletion));

 while(rdActivePipe.IsInUse());

 if(rdActivePipe.GetTransferStatus() != (int)wdu_err.WD_STATUS_SUCCESS)
 {

 67

 LogMsg(string.Format("Transfer Failed! Error {0}: {1} ",
 rdActivePipe.GetTransferStatus().ToString("X"),

wd_status_string_module.GetStat2Str(rdActivePipe.GetTransferS
tatus())));

 }
else
{
.
.

The resultant isochronous listening approach involved a long time in the busy-waiting

state rendering the overall GUI irresponsive (trapped in

while(rdActivePipe.IsInUse()) statement). In short, the polling thread literally

ate too much processor execution time according to the OS vocabulary.

Digging deeper in the DLL, the original C++ implementation of the call-back function

was examined. It turned out that the C++ call-back function uses multithreading

which is identical to what had been attempted. After some research in the example

codes provided by the third party software, a webcam application was spotted which

utilizes isochronous transfer as a means to communicate the video stream. Examining

the C++ specific implementation, the C++ function used for transferring the

isochronous packets used a specific parameter which was not supplied in the C#

wrapped DLL. The DLL was modified to include the same constant parameter and the

test was conducted again. Nevertheless, the results remained the same. With this, the

attempts to solve the problem associated with the isochronous type were brought to an

end, because of restrictions by the project timescale and resources. Unfortunately, this

leaves uncertainty and speculations about the identified OS-related problem.

To conclude, it is worth pointing out that some software packages such as Labview®

do not support isochronous type at all. This demonstrates how the late inclusion of the

isochronous type in the USB2.0 specifications affected the third-party support for this

particular transfer type.

6.3.2 Streaming through bulk endpoint

After giving up on the isochronous option, the bulk type was used. The initial testing

results showed a pattern of totally random number of packets that were received

before the transmission was interrupted altogether. Gradually an increasing delay was

 68

inserted until a continuous stream of packets was observed in the soft scope. The

following calculations detail the timing aspects associated with that working scheme.

Digital sampling rate: MHzMHz 125.3
8

25
= sampling period = 320 ns

With 2 Bytes per sample packing rate: 6.25MBytes/sec

Packet frequency = Hz
packetperBytes

MBytes 515625.103,6
1024

1025.6
__

sec/25.6 6

=
×

=
+

Packet period = sμ84.163

Effective packet period = packet period + delay inserted =

sss μμμ 84.1832084.163 =+

Effective packet frequency = 5439.51262 Hz

In order to slow down the system, the mainstream process was forced to poll on the

status flag of the sine_packing process. Listing 6.2 shows how is this done in

VHDL.

Listing 6.2

when SINE_PACK_SEND_LOOP =>

case index is
 when 0 =>
 rwSel <= "01";
 increment(index);

 when 1 =>
 sinPack.syncFlg <= '1';
 increment(index);

 when 2 =>
 if (sinPack.status = FINISHED) then
 sinPack.syncFlg <= '0';
 increment(index);
 end if;

 when 3 =>
 rwSel <= "10"; -- toggle
 thread_current_state <= IRRELEVANT;
 thread_next_state <= IRRELEVANT;
 thread_status <= INPROGRESS;
 increment(index);

The overhead associated with committing a packet to the USB device is primarily

determined by its iterative loop. Eleven clock cycles constitute the time needed for

 69

each sample to be written to the endpoint FIFO. Thus roughly the overhead of the

sending process is:

snstoverheadsending clk μ56.45040102411102411_ =××=××=

The total time taken before a packet is fully committed to the USB device FIFO is:

ssstimeoverall μμμ 4.63484.18356.450_ =+=

Of course, this timing can be speeded up by concurrently filling one of the buffers

while sending is in progress. This was the very reason behind adopting a double-

buffering scheme which was designed with a high bandwidth interchangeable

operation in mind. Since the performance was no near a bottleneck scenario whereby

consumption is faster than production, neither concurrent operations nor time-efficient

automatic FIFO mode were deployed. Had not this been the case, the packing process

could have been assigned a faster clock and the RAM buffer could have been operated

in the FIFO mode.

The final rate at which packets were being sent can be computed as follows:

MbpsMBpspackets
packet
Bytebitratehardware 912988.12614123.1

sec
)4.634(1024_ 1 ==×= −μ

The duration of a high-speed microframe has no effect on the hardware bitrate. After

the first packet has been committed, the production of the next packet occurs while

transmission is in progress. The production of a packet refers to all operations starting

from buffering it in the FPGA and ending with writing it to the endpoint FIFO.

As there was no means by which to observe what is actually taking place in the USB

protocol, the assessment of the resultant bitrate had to be done by programming on the

PC side. In order to do so, the following was done. Realizing that the refresh thread

has a frequency of 10Hz (a sleep interval of 100ms), the occurrences of two

consecutive refresh operations enclose in between a certain number of received

packets. In the SoftScope class, three private members were added; previousBurst

to hold the index of the last packet received when refresh was last called, average to

store the computed bitrate, and flag to decide whether bitrate has been already

computed. The code shown in Listing 6.3 was inserted to the refresh method

Listing 6.3

if (flag == 2)
{

 70

average = (double)(Var.USB_Packet.BurstIndex - previousBurst)*1024/100e-3;
}

line = String.Format("Average endpoint throughput {0:F} KBps", average/1000.0F);
lines.SetValue(line, 2);

flag++;

previousBurst = Var.USB_Packet.BurstIndex;

The reason why average is computed after the second increment of the flag is in

order to allow previousBurst to adapt to the previous BurstIndex first. average

signifies the number of bytes received in a 100 ms interval (thread sleep interval).

Surprisingly, the obtained average was only 30.72 KBytes per second i.e. thirty

packets/sec (245.76 Kbps). Moreover, this figure degraded to nearly 20 KBps after

some time. The manufacturer specifies that the maximum achievable throughput per

endpoint is 24 MBytes per second. Nearly a factor of 800 separates the results

measured on the PC side from what the manufacturer promises (24 MBps). A factor

of 15 is the difference between the rate at which data is being sent from the FPGA and

the feasible rate specified by the manufacturer.

Contemplating this matter for some time, various tests were conducted in an attempt

to elucidate this problem. With exactly identical setup, removing the line in which the

full flag is tested before proceeding with the program results in a random number of

packets being received by the PC before the transmission is interrupted altogether.

This means that at some point in time, the FPGA is required to slow down the rate of

packet production. Relying on this, the best conceivable explanation for this strange

phenomenon is the following. As more traffic is being placed on the differential USB

pair, packets are becoming bursty due external noise sources affecting the PCB trace.

At some stage, the occurrence of an error in a packet becomes inevitable whereby the

PC does not acknowledge one reception forcing the USB device into a resend

operation which conform to why polling on the FIFO flag is needed. The USB device

handles automatically low-level USB protocol requests such as a resend operation. In

plain English, although enumeration shows that transmission is taking place in the

high-speed mode, the actual achieved bitrate is degraded due to noise when trying to

exceed certain threshold bitrate. Unfortunately, the only way to defend this theory is

to use a USB protocol analyzer which was not available. A USB protocol analyzer

shows what is actually happening in the USB transmission.

 71

On the PC side, it was observed that the CPU utilization increased dramatically once

streaming had begun. The processor on which the GUI was run is Intel Mobile

Centrino®. The Centrino processor is part of a new trend towards having a real

mobile processor as opposed to a scaled-down version of a regular P4. The Centrino

processor is characterized by having a dynamic pipeline whose certain stages are shut

down when the processor is not fully functional. This allows for a maximum

conservation of power in accordance to the status of the processing load. The

applications being run concurrently determine the processing load and in turn

processor utilization. It was observed that once streaming had started, the cooling fan

of the Centrino started to work immediately indicating more processing load. In

addition, the CPU’s clock was noticed to be working at its maximum speed. This hints

that a significant amount of computational load had led to such a reaction from the

processor, which is in line with the reasoning so far.

At last, it is worth stressing that the results obtained are with respect to streaming

applications which are beyond the scope of this project. This effort was carried out in

an assist to the on going research which aims at streaming an aggregate of 25

MBytes/sec supplied by 32 acquisition channels. People involved in that project are

urged to investigate this problem further. As with regard to the project’s aims,

interfacing a digital tomograph to a PC was fulfilled.

6.4 DSP BOOTING

The ability to boot the DSP from the FPGA had not been an objective set right from

the beginning of the project. Later on, realizing that the SHARC DSP supports a

parallel port boot mode, and stemming from a practical need, this feature has been

added to the system through a software-hardware co-design. At some stages during

the development of the project, access to the PCI-based JTAG debugger and emulator

was restricted because of personnel unavailability. This resulted in an interruption in

the 4-month timetable that compromised the successful completion of the DSP part.

The idea of programming the DSP from the FPGA seemed to be the solution for

having no access to the JTAG. In addition, Analog Devices VisualDSP++ IDE has a

90 days trial version period which is enough for the project’s development time span.

 72

VisualDSP++ can generate a boot loader file for either an external SPI memory or a

parallel EEPROM connected to the parallel port. That is, if the FPGA can emulate an

8-bit parallel EEPROM, the DSP can be booted from the FPGA upon reset.

The first problem that was overcome is the following. The DSP rest pushbutton halted

the generation of the board clock whenever pressed. This means that the FPGA

received no clock while the duration of reset. After consulting the board’s designer, it

was feasible to disconnect the reset signal from the clock generation unit. The second

issue tackled was to do with the boot kernel. At first, the boot loader was parsed as a

constant 8-bit array of around 4K entries. It took the synthesizer a great deal of time

every time the design had to be recompiled. Moreover, when the boot method was

tried, the oscilloscope revealed that at some points entries lost lock with addresses.

The addresses read from the DSP were substituted by an internal incremental index

only to yield identical results. What was inferred from the oscilloscope is that after

around 3K addresses had passed, an entry whose address was supposed to be a

particular value appeared after four addresses. This meant that there were

inconsistencies between the entries and the addresses when approaching the end of

constant array. Realizing that constant arrays are implemented as distributed

memories, the entry-address inconsistent behavior towards large indices (4K entries)

is likely to be cased by long-distance cumulative propagation delays. After reasoning

about the problem, the solution was found in the Xilinx core generator facility. A 4K

distributed memory ROM was generated. In the software GUI, an option for parsing a

VisualDSP++ loader file into a Xilinx coefficient file was added. The Xilinx

coefficient file has a specific format that includes a memory radix and a memory

content vector. After examining some Xilinx coefficient files generated by

MATLAB’s filter design HDL coder toolbox, the format was comprehended and

integrated into the GUI. The content of the 4K distributed ROM was initialized using

the COE file and the boot operation was tested again. The result was a successful

booting that was verified using the oscilloscope. Figure 6.5 shows a snapshot of the

boot process.

 73

Figure 6.5: DSP booting snapshot

As a demonstrating example of the working scheme, a simple digital oscillator

(critically stable biquad IIR filter) was implemented. For information about general

IIR DSP filter implementations please refer to [47] [48]. Of course, this assembly

language filter implementation is specific to the underlying ADSP-2126x SHARC

architecture [20]. Details about the theory of self-sustained digital sinusoidal

oscillators can be found at [49].

The DSP’s timer0 was configured to deliver 8 KHz sampling frequency. Every timer0

interrupt, the digital oscillator algorithm is called and the parallel port is set up to

transfer the content of the 32-bit word Sinusoid. For a complete assembly code

listing please refer to the appropriate appendix. Figure 6.6 shows how transmission is

initiated every 125 µs.

 74

Figure 6.6: Digital oscillator transmission snapshot

The parallel port transfer operation consists of one ALE cycle per transaction. This is

achieved by setting the parallel port external modifier to zero resulting in maximum

data throughput. Figure 6.7 depicts this transaction whose WR cycle duration is 88 ns.

Figure 6.7: Parallel port transfer operation

Determined by the initial conditions of the digital sinusoidal oscillator with the

sampling rate in mind (8 KHz), a 100 Hz sinusoid was generated. Samples were

 75

buffered in the FPGA and were communicated to the PC in demonstration to the

overall successful implementation. Figure 6.7 shows the waveform received at the PC

side.

Figure 6.7: Digital Sinusoidal Oscillator

Figure 6.7 shows 128 32-bit samples sent over 1024 KB packet. The hex values had to

be converted first to double type utilizing the hex2decimal method of class

HexConversion. The quantization step was intentionally kept visible conveying a

discrete sampled signal. Classically, a low-pass reconstruction filter is applied in the

analogue domain to smooth out higher frequencies contained in the sharp-edge

transitions. This can be also done digitally in the DSP or the FPGA or even on the PC

side. However, since the waveform is merely meant to prove successful platform

exploitation, there was no need for further processing.

 76

6.5 FPGA METRIC ASSESSMENT

Synthesis was performed using Xilinx XST 6.1.03i. The summary of the synthesis

report is shown in table 6.1.

Table 6.1: Summary of Main synthesis report with ROM present.

Main

(with distributed ROM)

BELS 6047

FFs/Latches 598

CLK Buffers 3 37%
Cell Usage

IO Buffers 71 50%

SLICES 2005 55%

SLICE Flip Flops 598 8% Device Utilization

4 input LUTs 3580 49%

Then the distributed ROM was commented out and Main was re-synthesized. The

summary is shown in table 6.2.

Table 6.2: Summary of Main synthesis report excluding ROM.

Main

(without distributed ROM)

BELS 1940

FFs/Latches 570

CLK Buffers 3 37%
Cell Usage

IO Buffers 71 50%

SLICES 93 25%

SLICE Flip Flops 570 7% Device Utilization

4 input LUTs 1447 20%

As with regard to timing summary section of the synthesis report, the maximum

frequency was not included int the summary presented above for the following reason.

 77

Examination of this section showed that the theoretical maximum frequency is

45.595MHz with a maximum combinational path delay of 10.356ns. Firstly, the

scenario at which 10.356ns delay takes place was traced back to the source net

RD_bar_i with destination DB_d<7> through five levels of combinational logic. The

irrelevant debugging pin was commented out and the design was re-synthesized.

Again the report showed a maximum combinational path delay of 9.638ns occurring

between source RD_bar_i and destination AD_io<7> through four levels of logic. Not

only the destination pin is supposed to meet a certain setup time of 3.3ns (specified

by the DSP manufacturer), but also RD_bar_i is totally irrelevant to the internal clock

on which operations are being carried out. In addition, RD process was intentionally

implemented in this way in order to allow for the propagation of data after the address

is read. In other words, this case imposes a restriction on the active duration of RD

rather than on the internal clock. RD being an external clock has confused the

synthesizer in imposing restrictions on the internal clock, or at least the synthesizer

has presented a fact which is up to the designer how to interpret it. Secondly, still

these are never precise figures as the design deploys two clocks namely clk and

clk2x. The low clock figure is likely to be with respect to clk which is already

operating at 25 MHz due to its relatively high load and other USB-related factors such

as addressing distributed constant arrays (descriptor and register configuration). This

means that the DSP process may be able to deploy yet faster clock resulting in more

time resolution. Thus more exact figures can be obtained from the “place & route”

report in the form of clock skew and delay.

Since it is obvious that Main without a distributed ROM component presents a more

faithful reflection of the implemented design, the following tables provide further

analysis of “map” and “place & route” reports for Main without distributed ROM.

Table 6.3 provides a summary of major metrics extracted from “Map” and “Place &

Route” reports. Table 6.4 lists the fanout, skew, and delay associated with both

clocks.

 78

Table 6.3: Summary of “Map” and “Place & Route” reports

 Main

SLICES 757 21%

SLICE Flip Flops/Latches 339 4%

Total 1,374 19%

used as logic 1,257

4
in

pu
t

L
U

T
s

used as route-through 117

Total 83,768

Map

Report

G
at

e
co

un
t

JTAG for IOBs 3,408

Average Connection Delay 0.991 ns

Average Connection Delay for 10
worst nets 3.909 ns

Place & Route

Report
Max pin delay 5.052 ns

Table 6.4: Summary of “Generating Clock” section of the “Place & Route” reports

 Main

Fanout 150

Net skew 0.153 ns

c
l
k

Max delay 0.458 ns

Fanout 49

Net skew 0.097 ns

Place & Route

Report

c
l
k
2
x

Max delay 0.396 ns

Table 6.4 shows that clk has in general larger metrics than that of clk2x.

The parametric analysis reveals that significant additional computations can be

performed exploiting more than 75% left free resources. However, it was established

earlier that free resources are far from being a faithful “linear” assessment of what can

be further implemented in the FPGA. The overall resources utilization is a

compromise between timing and density (due to limited routability). Yet the

availability of dedicated units such as multipliers makes additional DSP computations

feasible in their abstract sense without taking into account the associated control and

 79

datapath which have to be implemented using CLBs. Pipleling the datapath can

improve timing performance. The Xilinx Core Generator can be deployed in

producing a pipelined multiply-accumulate DSP components. Even control FSMs can

be improved in terms of timing. The nesting of conditions in a state must be kept

vertical in one level whenever possible. Insertion of null conditions in the “else” case

reduces accidental latches although ultimately the implementation of FSM depends on

the manufacturer template to which the designer must adhere.

6.6 GUI SAMPLE OPERATION

Figures 6.8 and 6.9 shows snapshots of some of the features of the developed GUI.

Figure 6.8: A snapshot of the SoftScope.

A digitally-synthesized sine wave of 100 KHz sampled at 3.125 MHz is displayed in

figure 6.8. SoftScope comprises various fields emulating the operations of an actual

oscilloscope. Although all presented fields are properly linked to the

GlobalVariables corresponding variables, only y-scale and normalization factor are

activated at the moment. Others are left to be easily included later in the refresh

method. For instance, the timebase field (x-scale) was left unconnected because it

 80

essentially depends on the sampling frequency which is application specific.

Depending on the sampling frequency, a proper time-increment should be accounted

for in the refresh operation. A possible generic situation is to send the sampling

frequency as a header field in each packet. The application can decode this field to

extract the inverse time-increment. Once the final application parameters are decided

these fields can be activated in a very straightforward manner.

Figure 6.9: A snapshot of the SpectrAnalyzer.

In response, figure 6.9 shows a single harmonic residing at a normalized frequency of

0.032 Hz. This corresponds exactly to what is expected as Hz
MHz

KHz 032.0
125.3

100
= .

This result is obtained with a Blackman windowing function, linear scale, 8x

frequency scale, and 1024 frequency bins. Only the channel radio buttons are inactive

at the moment as a single channel is currently in operation.

 81

Chapter 7

Conclusions & Future Work

7.1 CONCLUSIONS

Throughout the time span of the project, a software-hardware platform of a digital

tomograph with USB PC connectivity was developed. The hybrid architecture is now

ready for implementing some serious processing tasks. The combination of a well

coupled fine-grained reconfigurable fabric with a floating-point DSP constitutes a

skeleton architecture for targeting the high class of the embedded computing

applications. The FPGA-controlled USB link not only can communicate results to a

user friendly GUI of multi-functionalities, but can facilitate an in-circuit emulation

and debugging when used in conjunction with the reconfigurable FPGA. The

philosophy of having a master FPGA stems from the desire to control both the USB

device and DSP through the use of synchronized concurrent processes and still at the

same time offers enough reconfigurable fabric for further customized computations.

The Spartan-3 has dedicated multiplier blocks enabling the realization of auxiliary

DSP operations on the reconfigurable fabric necessary for algorithmic control tasks.

Effectively yielding a system that can be configured and controlled to a large extent

from within one design environment which was a goal set right from the beginning

during design study phase.

The previous acquaintance of JAVA facilitated a rather rapid migration to C#

effectively shortening software development period. VHDL was investigated

thoroughly as a means for digital design. The transition between the formally adopted

schematic-based approaches to advanced VHDL logic design is a major outcome of

this project. VHDL was used not only as a hardware modelling language but also as a

simulation tool via VHDL test benches. A methodological hardware-software co-

design approach was demonstrated. Vast exposure to USB protocol is in itself an

important consequence as USB is expected to be the next predominant solution in the

embedded systems environment. Practical FPGA issues such as routing impact were

 82

interesting to be realized away from their ever present literature treatment. The core

architecture of the SHARC DSP was studied thoroughly allowing the coding of some

classical simple DSP problems. Again previous experience with fixed-point DSPs

accelerated this process.

However, due to limited time-scale no major novel hardware implementations were

attempted. The relatively large number of tasks tackled in the project did not allow for

further investigations and optimizations of some encountered issues such as USB

endpoint bandwidth in streaming applications (30.72 KBps per endpoint). With 50

MHz clock, a DSP transfer rate of 22.7272 MBps could be handled successfully with

almost 5 clock resolution ratio per WR cycle (88 ns per 16-bit word). By deploying

faster clock this figure can be easily improved. The unpredictability of hardware

behaviour consumed all the advancements made in the project timetable.

Finally, from software programming, hardware design, OS concepts, to artificial

intelligence, many aspects from computer engineering were deployed into the

successful realization/reasoning of/about this hardware-software platform with a

significant element of research.

7.2 PROPOSED FUTURE WORK

Floating-point representation support in the HexConversion class can be added so that

floating-point formatted words can be communicated from the DSP and decoded on

the PC side for further packing, visualization, or processing.

Exception handling management may be investigated later and added to the software

design. Since the software was developed rather quickly, exception handling was not

investigated thoroughly. For instance, an out-of-sequence commands might trigger

some exceptions (null objects) resulting in the collapse of the software session.

Exception handling is a very straightforward issue that only requires time. Constant

debugging of the potential causes will eventually yield exception free software.

Since the skeleton architecture is now ready for serious utilization attempt, it may be

rational to think about the realization of a relevant embedded computing application.

In the tomography context, this could be a full or partial reconstruction technique.

Modelling can be done using VHDL test benches as an input to the FPGA master

 83

controller simulating the effects of various system parameters including a DSP

stimulus. Therefore, the customized control and computing of the reconfigurable

fabric can be verified in abstraction. Furthermore, the DSP share of the algorithmic

implementation can be simulated in the VisualDSP++ IDE. Later on, the overall

performance of the system can be in-circuit debugged and logged (to PC) through the

use of the FPGA in conjunction with the USB device. However, as convenient as this

might be, the utilization of this system is associated with a significant learning curve.

On one hand, VHDL requires a considerable effort and time before being fully

digested as a digital synthetical and simulating tool. On the other hand, for efficient

assembly coding, the DSP meticulous architecture has to be fairly researched. The

SHARC DSP supports a rather advance comprehensive instruction set that reflects its

architecture faithfully. As an example, for efficient coding, instructions such as

delayed branch have to be exploited whenever possible in order to optimize the use of

the pipeline. As DSP algorithms are centred around iterative loops, coding

enhancements as little as a delayed branch instead of ordinary branch are not to be

taken slightly in highly demanding processing applications such as the reconstruction

problem. An improvement of 0.002% in a given function which is called 10K

times/sec yields a 20% system improvement. Various issues such as stack current

context save and retrieve are of intimate relation to the underlying architecture.

Another example can be the challenging issue of inter-process synchronization whose

solution is described in the “Dining Philosophers” problem in one of its forms. These

are directly imported from the OS literature. A DSP is essentially an embedded

processor which means that if one were to exploit its processing power, classical OS

solutions remain perfectly applicable and just scaled down to an embedded

environment (processes are relevant to the context of operation rather than generic).

Thus it is of no surprise that tackling embedded OS problems is inevitable when

programming in assembly or even higher level languages such as C which still

requires awareness of such issues before deploying a readily-supplied solutions.

Therefore, in order to produce significant results, future projects should account for

the significant learning curve associated with the system not to mention the theoretical

background of the intended application itself. With these considerations in mind, a

minimum of fully dedicated MPhil students are likely to meet these requirements

more than MSc students.

 84

The USB PCB high-speed design considerations were not part of the project tasks. As

it was concluded that noise might be a contributing factor to the poor USB endpoint

bandwidth performance, future investigations of the PCB recommended

considerations and shielding are worth the effort. The availability of USB protocol

analyzer in USB2.0 projects gives more insight to the various protocol operations

such as bit stuffing or handshaking packets. Thus shortening development cycle and

reducing speculative blind effort. Further examination of the OS considerations with

respect to USB streaming application will aid in explaining the unexpected behaviour

of the isochronous transfer type.

Support for a set of requests through the bidirectional endpoint 0 can be added to

contribute in the versatility of the overall system. Nevertheless, such tasks require

considerable research in the USB protocol.

Replace the dip switch that controls the boot sequence of the DSP with a digitally-

controlled one to be used by the FPGA as to in-circuit reprogram the DSP without the

need for explicit intervention from the user. The DSP reset switch also is to be

replaced by an FPGA pin. Because of the relatively long initialization duration of

SRAM-based FPGAs, all on-board chip initializations should proceed that of the

FPGA. Thus allowing the FPGA to reset all the on-board chips is a more coherent

design practice.

Having such large distributed ROM present in the FPGA might compromise the

further sustainable computational tasks. Physically, RAM blocks within the FPGA

exist as 18Kbit configurable entities. This particular Spartan-3 has 16 RAM blocks

present over two columns. If a sufficient number of blocks were linked together, a

fairly large RAM space becomes addressable. Then pointers can be used to refer to a

starting address in this RAM space. From the PC side, the DSP loader file can be sent

over say four packets and buffered in the available RAM space alleviating the need

for a ROM block. Later on, the same space can be used for other purposes and

different processes can share a multiplexed RAM space.

 85

Bibliography

[1] Williams, R.A. and M.S. Beck, Process tomography: principles, techniques,
and applications. 1995, Oxford; Boston: Butterworth-Heinemann. xxv, 581p,
3 – 12.

[2] Holder, D. and o.P. Institute, Electrical impedance tomography: methods,
history and applications. Series in medical physics and biomedical
engineering. 2005, Bristol: Institute of Physics. xiii, 456, 295 – 340.

[3] Hegel, G.W.F. and L.S. Stepelevich, Preface and Introduction to The
phenomenology of mind. The Library of liberal arts. 1990, New York; London:
Macmillan: Collier Macmillan.

[4] Williams, R.A. and M.S. Beck, Process tomography: principles, techniques,
and applications. 1995, Oxford; Boston: Butterworth-Heinemann. xxv, 581p,
13 – 36.

[5] A. Reader, “Tomography and the Inverse Problems”, Lecture notes DIAS
MTP 2004 – 2005.

[6] Holder, D. and o.P. Institute, Electrical impedance tomography: methods,
history and applications. Series in medical physics and biomedical
engineering. 2005, Bristol: Institute of Physics. xiii, 456, 3 – 56.

[7] Dick, C. Rediscovering signal processing: a configurable logic based
approach. 2003. Pacific Grove, CA, USA: IEEE.

[8] Bilsby, D.C.M., R.L. Walke, and R.W.M. Smith. Comparison of a
programmable DSP and a FPGA for real-time multiscale convolution. 1998.
London, UK: IEE.

[9] dsPIC30F Data Sheet General Purpose and Sensor Families, Microchip
Technology Inc, 2003.

[10] Langen D., J. C. Niemann, M. Porrmann, and H. Kalte, Implemetation of a
RISC Processor Core SoC Designs – FPGA Prototype vs. ASIC
Implementation. 2002. IEEE proceedings.

[11] L. Fanucci, A. Renieri, C. Rosadini, C. Sicilia, and D. Sicilia, Generic Sensor
Interface for On-Board Satellite Applications. IEIIT.

[12] Van den Keybus, J., et al. DSP and FPGA based platform for rapid
prototyping of power electronic converters and its application to a sampled-
data three-phase dual-band hysteresis current controller. 2002. Cairns, Qld.,
Australia: IEEE.

[13] Mann, S., et al. A flexible test-bed for developing hybrid linear transmitter
architectures. 2001. Rhodes, Greece: IEEE.

[14] Abbiati, R., A. Geraci, and G. Ripamonti, Self-configuring digital processor
for on-line pulse analysis. IEEE Transactions on Nuclear Science, 2004. 51(3,

 86

pt.3): p. 826.

[15] Yin-Tsung, H., C. Cheng-Ji, and C. Bor-Liang. A rapid prototyping embedded
system platform and its HW/SW communication interface generation and
verification. 2002. Bali, Indonesia: IEEE.

[16] Sung Su, K. and J. Seul. Hardware implementation of a real time neural
network controller with a DSP and an FPGA. 2004. New Orleans, LA, USA:
IEEE.

[17] http://www.usb.org/. [Retrieved 11 September 2005].

[18] On-The-Go Supplement to the USB2.0 Specifications,
http://www.usb.org/developers/onthego/. [Retrieved 11 September 2005].

[19] Wireless USB Specifications, http://www.usb.org/developers/wusb/.
[Retrieved 11 September 2005].

[20] ADSP-2126x SHARC DSP Core Manual, Analog Devices Inc, 2004. p2-9.

[21] Ifeachor, E.C. and B.W. Jervis, Digital signal processing: A practical
approach. 2nd ed ed. 2002, Harlow: Prentice Hall. xxiii, 933p, 121 – 132.

[22] Ifeachor, E.C. and B.W. Jervis, Digital signal processing: A practical
approach. 2nd ed ed. 2002, Harlow: Prentice Hall. xxiii, 933p, 273 – 301.

[23] NPlot – A charting library from .NET. Copyright © 2003 – 2005 Matt Howlett
and others. http://www.nplot.com/. [Retrieved 11 September 2005].

[24] Stallings, W., Operating systems: internals and design principles. 4th ed.
2001, Upper Saddle River: Prentice Hall. xviii, 779.

[25] Deitel, H.M., C#: a programmer's introduction. Deitel developer series. 2003,
Upper Saddle River, N.J.: Prentice Hall. xlix, 862.

[26] Microsoft .NET Framework SDK v1.1 Documentations.

[27] Laplante, P. and o.E.a.E.E. Institute, Real-time systems design and analysis:
an engineer's handbook. 3rd ed ed. 2004, Piscataway, N.J.: Ieee. 512, 225 –
260.

[28] ADSP-2126x SHARC DSP Peripheral Manual, Analog Devices Inc, 2004.

[29] Todman, T.J., et al., Reconfigurable computing: architectures and design
methods. IEE Proceedings-Computers and Digital Techniques, 2005. 152(2):
p. 193.

[30] Vuletic, M., L. Pozzi, and P. Ienne. Programming transparency and portable
hardware interfacing: towards general-purpose reconfigurable computing.
2004. Galveston, TX, USA: IEEE Comput. Soc.

[31] Cypress EZ-USB SX2 Driver for VxWorks User’s Guide, WindRiver Systems,
2001.

 87

http://www.usb.org/
http://www.usb.org/developers/onthego/
http://www.usb.org/developers/wusb/
http://www.nplot.com/

[32] Bulk Transfers with the EZ-USB SX2 Connected to an Intel XScale DMA
Interface, Cypress application note AN052, 2003.

[33] Bulk Transfers with the EZ-USB SX2 Connected to a Hitachi SH3 DMA
Interface, Cypress application note, 2002.

[34] Trimberger, S. Effects of FPGA architecture on FPGA routing. 1995. San
Francisco, CA, USA: ACM.

[35] Seokjin, L. and M.D.F. Wong, Timing-driven routing for FPGAs based on
Lagrangian relaxation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2003. 22(4): p. 506.

[36] Luger, G.F., Artificial intelligence: structures and strategies for complex
problem solving. 4th ed. 2002, Harlow: Addison-Wesley. xxiii, 856.

[37] Patel, H., The 40% Performance Advantage of Virtex-II Pro FPGAs over
Competitive PLDs. Xilinx white paper WP206, 2004.

[38] Iyoda, J. and M. J. C. Gordon, Higher-Level Hardware Synthesis in HOL.
University Cambridge Computer Laboratory.

[39] Pursley, D. J. and B. L. Cline, A Practical Approach to Hardware and
Software SoC Tradeoffs Using High-level Synthesis for Architectural
Exploration. Forte Design Systems, 2003.

[40] Sanguinetti, J. and D. Pursely, High-Level Modelling and Hardware
Implementation with General-Purpose Languages and High-level Synthesis.
Forte Design Systems, 2002.

[41] Johnson, David, et.al, Design automation of a receiver: breaking the RTL
cycle Time barrier using Behavioral Compiler. DesignCon98, 1998.

[42] Pursley, D. J., Using behavioal clustering to improve quality of results for
DSP designs. Forte Design Systems.

[43] USB 2.0 Specification, Compaq, Hewlett-Packard, Intel, Lucent, Microsoft,
NEC, and Philips. Chapters 5-9-10.

[44] Streaming Data Through Isochronous/Bulk Endpoints on EZ-USB FX2 and
EZ-USB FX2LP, Cypress application note AN4053, 2005.

[45] Microsoft USB Isochronous Data Transfer Issues Patch.
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q307271. [Retrieved
11 September 2005].

[46] USB Device Resource. http://www.guidenet.net/resources/usb.html. [Retrieved
11 September 2005].

[47] El-Sharkawy, M., Real time digital signal processing applications with
Motorola's DSP56000 family. 1990, Englewood Cliffs, N.J.: Prentice Hall.
398p.

[48] Gaydecki, P. and o.E.E. Institution, Foundations of digital signal processing:
theory, algorithms and hardware design. IEE circuits, devices and systems
series; 15. 2004, London: Institution of Electrical Engineers. xxii, 462 p.

[49] Proakis, J.G. and D.G. Manolakis, Digital signal processing: principles,

 88

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q307271
http://www.guidenet.net/resources/usb.html

algorithms, and applications. 3rd ed ed. 1996, Upper Saddle River, N.J.;
London: Prentice-Hall International (UK). xv, 968, [48] p.

[50] www.xilinx.com

[51] www.analog.com

[52] www.cypress.com

[53] www.microsoft.com

 89

http://www.xilinx.com/
http://www.analog.com/
http://www.cypress.com/
http://www.microsoft.com/

Other Readings

[1] Navabi, Z., VHDL: analysis and modeling of digital systems. 2nd ed ed. 1998,

Boston: McGraw-Hill. xxii, 632 p.

[2] Charles H. Roth, Jr, Digital Systems Design Using VHDL. 1997, Boston: ITP,
470 p.

[3] Ashok K. Sharma, Programmable Logic Handbook: PLDs, CPLDs and
FPGAs. 1998, McGraw-Hill.

[4] ADSP-21160 SHARC DSP Instruction Set Refrence, Analog Devices Inc,
1999.

 90

APPENDICES

A. VHDL Code

A.1 Main.vhd
A.2 bus_driver.vhd
A.3 DSP_Driver.vhd
A.4 synchronizer.vhd
A.5 RAM_Buffer.vhd
A.6 SX2_Utilities.vhd

B. SHARC Assembly Code

B.1 main.asm
B.2 _initAlgorithm.asm
B.3 _init_timer0.asm
B.4 _algorithm.asm
B.5 PP_CON.asm
B.6 tmr0_isr.asm

C. C# Code

C.1 Acquisition.cs
C.2 Complex.cs
C.3 DefaultInterface.cs
C.4 FFT.cs
C.5 GlobalVariables.cs
C.6 Hex2Dec_Converter.cs
C.7 HexConversion.cs
C.8 RandomAccessBurst.cs
C.9 SoftScope.cs
C.10 SpectrumAnalyzer.cs

 91

A. VHDL Code

 92

B. SHARC Assembly Code

 93

C. C# Code

 94

	 Content
	 List of Figures
	 List of Tables
	 Abstract
	 Declaration
	Copyright Statement
	 Acknowledgements
	Chapter 1
	Introduction
	1.1 PHILOSOPHY
	1.2 TOMOGRAPHY & COMPUTATION
	1.3 PROJECT ENVIRONMENT
	1.4 BRIEF OVERVIEW, AIMS & OBJECTIVES

	Chapter 2
	Design Motivation
	2.1 THE DIGITAL CONFIGURABLE CHOICE
	2.2 THE HYBRID ARCHITECTURE
	2.3 USB SUPPORT

	Chapter 3
	Detailed Software Design
	3.1 INTRODUCTION
	3.2 MATHEMATICAL & NUMERICAL REPRESENTATIONS
	3.2.1 HexConversion class:
	3.2.2 Complex structure:
	3.2.3 FFT class:

	3.3 USB-RELATED IMPLEMENTATIONS
	3.3.1 RandomAccessBurst class:
	3.3.2 Acquisition class:
	3.3.3 Low-level USB functions:

	3.4 VISUALIZATION
	3.5 OPERATING SYSTEM CONCEPTS
	3.5.1 Theoretical background - Multithreading:
	3.5.2 Mutual exclusion solution adopted:
	3.5.3 Plot refreshing mechanism:

	Chapter 4
	Detailed Digital Hardware Design
	4.1 INTRODUCTION
	4.2 HARDWARE CONCURRENCY
	4.2.1 Identifying the problem
	4.2.2 Proposed solution

	4.3 INTER-PROCESS SYNCHRONIZATION
	4.4 VHDL CODE MODULAR ARCHITECTURE
	4.4.1 A closer look at SX2_Utilities package

	Chapter 5
	DSP-Related Digital Hardware Design
	5.1 DSP INTERFACE
	5.1.1 Introduction
	5.1.2 Parallel port description
	5.1.3 DSP_Driver module

	5.2 SYNCHRONIZATION MECHANISM
	5.3 DSP BUFFERING SCHEME

	Chapter 6
	Experimental Results & Analysis
	6.1 MISCELLANEOUS HARDWARE DESIGN CONSIDERATIONS
	6.2 FPGA INTERNAL LOGIC ROUTING
	6.2.1 Problem encountered & solution
	6.2.2 Analysis

	6.3 USB2.0 ENDPOINT BANDWIDTH
	6.3.1 Streaming through isochronous endpoint
	6.3.2 Streaming through bulk endpoint

	6.4 DSP BOOTING
	6.5 FPGA METRIC ASSESSMENT
	6.6 GUI SAMPLE OPERATION

	Chapter 7
	Conclusions & Future Work
	7.1 CONCLUSIONS
	7.2 PROPOSED FUTURE WORK

